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ABSTRACT

The Planck Catalogue of Compact Sources (PCCS) is the catalogue of sources detected in the first 15 months of Planck operations, the “nominal”
mission. It consists of nine single-frequency catalogues of compact sources, both Galactic and extragalactic, detected over the entire sky. The
PCCS covers the frequency range 30–857 GHz with higher sensitivity (it is 90 % complete at 180 mJy in the best channel) and better angular
resolution (from 32.88′ to 4.33′) than previous all-sky surveys in the microwave band. By construction its reliability is > 80 % and more than 65 %
of the sources have been detected at least in two contiguous Planck channels. Many of the Planck PCCS sources can be associated with stars with
dust shells, stellar cores, radio galaxies, blazars, infrared luminous galaxies and Galactic interstellar medium features. In this paper we present the
construction and validation of the PCCS, its contents and its statistical characterization.

Key words. cosmology: observations – surveys – catalogues – radio continuum: general – submillimeter: general

1. Introduction

This paper, one of a set associated with the 2013 release of
data from the Planck1 mission (Planck Collaboration I 2013),

∗Corresponding author: J. González-Nuevo, gnuevo@ifca.unican.es
1 Planck (http://www.esa.int/Planck) is a project of the

European Space Agency (ESA) with instruments provided by two sci-
entific consortia funded by ESA member states (in particular the lead
countries France and Italy), with contributions from NASA (USA) and

describes the first release of the Planck Catalogue of Compact
Sources (PCCS).

The main goal of the Planck mission is to measure tiny fluc-
tuations in the cosmic microwave background (CMB), the relic
radiation of the big bang; this radiation is “contaminated” by
foreground emission arising from cosmic structures of all sizes
located between the CMB and us – galaxies, galaxy clusters, and

telescope reflectors provided by a collaboration between ESA and a sci-
entific consortium led and funded by Denmark.
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gas and dust distributed on small as well as large scales within
the Milky Way. In order to reveal the rich cosmological infor-
mation concealed in the CMB such foreground emission must
be characterized and separated (Planck Collaboration XII 2013).
As a by-product, the study of foregrounds delivers an extensive
catalogue of discrete compact sources as well as a series of maps
of the Galactic diffuse emission; both of these are valuable re-
sources for a variety of studies in the fields of Galactic and ex-
tragalactic astrophysics.

The Planck Early Release Compact Source Catalogue
(ERCSC; Planck Collaboration VII 2011) presented catalogues
of discrete source detected during Planck’s first 1.6 all-sky sur-
veys. The ERCSC has produced important astrophysical results,
for example, Planck has demonstrated that the high frequency
counts (at least for frequencies ≤ 217 GHz) of extragalactic
sources are dominated at the bright end by synchrotron emit-
ters, not dusty galaxies (Planck Collaboration Int. VII 2013).
In addition, Planck demonstrated a significant steepening in
blazar spectra at frequencies above 70 GHz with spectral in-
dices (defined by S ∝ να) in the range α = −0.5 to −1.2
(Planck Collaboration XIII 2011; Planck Collaboration XIV
2011; Planck Collaboration XV 2011). Tucci et al. (2011) in-
terpreted this spectral behaviour as caused, at least partially,
by the transition from the optically-thick to the optically-thin
regime in synchrotron emission from the AGN jets. Moreover,
the ERCSC has offered the first opportunity to accurately deter-
mine the luminosity function of dusty galaxies in the very lo-
cal Universe (i.e., distances ≤ 100 Mpc), at several millimetre
and submillimetre wavelengths, from complete samples of low-
redshift sources, unaffected by cosmological evolution (Negrello
et al. 2013).

This paper presents a new Planck Catalogue of Compact
Sources (PCCS), which uses deeper observations (from the
first 15 months of Planck operations) and better calibration
and analysis procedures (Planck Collaboration II 2013; Planck
Collaboration VI 2013) to improve on the results from the
ERCSC. The PCCS comprises nine single-frequency source
lists, one for each Planck frequency band. It contains high-
reliability sources, both Galactic and extragalactic, detected over
the entire sky. The PCCS differs in philosophy from the ERCSC
in that it puts more emphasis on the completeness of the cat-
alogue, without greatly reducing the reliability of the detected
sources (> 80 % by construction). A comparison of the PCCS
and ERCSC results is presented in Sect. 4.3.

This paper describes the construction and content of the
PCCS; scientific results from the catalogue will appear in
later papers. In Sect. 2 we describe the data, source detection
pipelines, selection criteria, and photometry methods used in the
production of the PCCS. In Sect. 3 we discuss the validation
processes (both internal and external) performed to assess the
quality of the catalogues. The main characteristics of the PCCS
are summarized in Sect. 4, and a description of the content and
use of the catalogue is presented in Sect. 5. Finally, in Sect. 6 we
summarize our conclusions. Details of the different photometry
estimators are described in Appendix A.

2. The Planck Catalogue of Compact Sources

2.1. Data

The data obtained from the Planck nominal mission between
2009 August 12 and 2010 November 27 have been processed
into full-sky maps by the Low Frequency Instrument (LFI; 30–
70 GHz) and High Frequency Instrument (HFI;100–857 GHz)

Data Processing Centres (DPCs) (see Planck Collaboration II
2013; Planck Collaboration VI 2013). The data consist of two
complete sky surveys and 60 % of the third survey. This implies
that the flux densities of sources obtained from the nominal mis-
sion maps are the average of at least two observations.

The nine Planck frequency channel maps were used as in-
put to the source detection pipelines. For the highest-frequency
channels, 353, 545 and 857 GHz, a model of the zodiacal emis-
sion (Planck Collaboration XIV 2013) was subtracted from the
maps before detecting the sources. The relevant properties of the
frequency maps are summarized in Table 1.

2.2. Source detection pipelines

Compact sources were detected in each frequency map by look-
ing for peaks after convolving with a linear filter that preserves
the amplitude of the source while reducing the large scale struc-
ture (e.g., diffuse Galactic emission) and small scale fluctua-
tions (e.g., instrumental noise) in the vicinity of the sources.
We have explored the performance of different filters using re-
alistic Planck simulations, among them our implementation of a
matched filter and the first and second members of the Mexican
Hat Wavelet Family, MHW and MHW2 (González-Nuevo et al.
2006; López-Caniego et al. 2006), and for these particular data
we have chosen the last of these, MHW2, which performs better
than the MHW and similarly to the matched filter. The MHW2
has only one free parameter, the scale R, to be optimized, and
is less sensitive to artefacts (e.g., missing pixels) or very bright
structures in the image, like those found in the Galactic plane.
These bright structures sometimes introduce instabilities in the
determination of the power spectrum needed to construct the
matched filter. The MHW2 is robust and gives good performance
at all Galactic latitudes. It has previously been used to detect
compact sources in astronomical images, including realistic sim-
ulations of Planck (López-Caniego et al. 2006; González-Nuevo
et al. 2006; Leach et al. 2008) and data from WMAP (López-
Caniego et al. 2007; Massardi et al. 2009).

The MHW2 filter in Fourier space is given by

ψ̂ (kR) ∝ (kR)4 τ(kR), (1)

where τ, the beam profile or point spread function is approxi-
mated by a Gaussian function τ(x) =

(
1/2πσb

2
)

exp− 1
2 (x/σb)2,

and σb is the Gaussian beam dispersion.
Two independent implementations of the MHW2 algorithm

have been used, one by the LFI DPC and another by the HFI
DPC. The outputs of the two implementations have been com-
pared and the results are compatible at the level of statistical
uncertainty (see Sect. 2.5). An additional algorithm, the matrix
filter (Herranz & Sanz 2008; Herranz et al. 2009), has been used
to validate the catalogue; this is a multifrequency method that is
also being used for the production of a multifrequency catalogue
of non-thermal sources that will be published in a future paper.

The two MHW2 pipelines have a number of features in com-
mon. The full-sky HEALPix maps (Górski et al. 2005) are di-
vided into small, square patch maps using a gnomonic projec-
tion. The patches should be large enough to get a fair sample
of the noise in each, but small enough that the noise and fore-
ground characteristics are close to uniform across each patch.
The number of patches is chosen to allow sufficient overlap to
remove detections in the borders of the patches where edge ef-
fects become important. In both pipelines the scale R of the filter
is optimized by finding the maximum signal-to-noise ratio (S/N)

2
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Fig. 1. Sky distribution of the PCCS sources at three different channels: 30 GHz (pink circles); 143 GHz (magenta circles); and
857 GHz (green circles). The dimension of the circles is related to the brightness of the sources and the beam size of each channel.
The figure is a full-sky Aitoff projection with the Galactic equator horizontal; longitude increases to the left with the Galactic centre
in the centre of the map.

Table 1. PCCS characteristics

Channel 30 44 70 100 143 217 353 545 857

Freq [GHz] . . . . . . . . . . . . . . . 28.4 44.1 70.4 100.0 143.0 217.0 353.0 545.0 857.0
λ [µm] . . . . . . . . . . . . . . . . . . 10561 6807 4260 3000 2098 1382 850 550 350
Beam FWHMa [arcmin] . . . . . 32.38 27.10 13.30 9.65 7.25 4.99 4.82 4.68 4.33

S/N thresholds
Full sky . . . . . . . . . . . . . . . . . 4.0 4.0 4.0 4.6 4.7 4.8 . . . . . . . . .
Extragactic zoneb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9 4.7 4.9
Galactic zoneb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0 7.0 7.0

Number of sources
Full sky . . . . . . . . . . . . . . . . . 1256 731 939 3850 5675 16070 13613 16933 24381
|b| > 30◦ . . . . . . . . . . . . . . . . . 572 258 332 845 1051 1901 1862 3738 7536

Flux densities
Minimumc [mJy] . . . . . . . . . . . 461 825 566 266 169 149 289 457 658
90 % completeness [mJy] . . . . . 575 1047 776 300 190 180 330 570 680
Uncertainty [mJy] . . . . . . . . . . 109 198 149 61 38 35 69 118 166

Position uncertaintyd [arcmin] 1.8 2.1 1.4 1.0 0.7 0.7 0.8 0.5 0.4
a FEBeCoP band-averaged effective beam. This table shows the exact values that were adopted for the PCCS. For HFI channels, these are the

FWHM of the mean best-fit Gaussian. For the LFI channels, we use FWHMeff =

√
Ωeff

2π 8 log 2, where Ωeff is the FEBeCoP band-averaged
effective solid angle (see Planck Collaboration IV 2013 and Planck Collaboration VII 2013 for a full description of the Planck beams). When
we constructed the PCCS for the LFI channels we used a value of the effective FWHM slightly different (by� 1%) of the final values specified
in the Planck Collaboration IV (2013) paper. This small correction will be made in later versions of the catalogue.

b The Galactic and extragalactic zones are defined in Sect. 2.3.
c Minimum flux density of the catalogue at |b| > 30◦ after excluding the faintest 10 % of sources.
d Positional uncertainty derived by comparison with PACO sample (Massardi et al. 2011; Bonavera et al. 2011; Bonaldi et al. 2013) up to 353 GHz

and with Herschel samples in the other channels (see Sect. 3.2.3 for more details).

3
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of the sources in the filtered patch. The optimal scale is deter-
mined for each patch independently. Detections above a given
S/N threshold are retained and the positions of the detected ob-
jects are translated from patch coordinates to spherical coordi-
nates. The final stage is to remove multiple detections of the
same object from different patches.

LFI The compact source detection pipeline used in the LFI is
part of the IFCAMEX software package2. It can be used to de-
tect sources with no prior information on their position (blind
mode), or at the position of known objects (non-blind mode).
For this analysis we blindly search for objects over the full sky
with S/N ≥ 2 to produce a preliminary catalogue of potential
sources with positions, flux densities and uncertainties. In the
second step, IFCAMEX is run in non-blind mode, using as in-
put the coordinates of the objects detected in the first step and
keeping those with S/N ≥ 4. In this case the patch is centred
on the position of the source. The goal of this second iteration
is to minimize the already small border and projection effects
and to refine the estimation of the position and S/N of each de-
tection, keeping only those objects that still have a S/N above
the threshold, thus improving the reliability of the catalogue. In
addition, and given the large size of the LFI beams, a fitting algo-
rithm has been incorporated to search the centroid of the sources,
achieving sub-pixel accuracy in the determination of their coor-
dinates. Moreover, we have taken into account the effective non-
Gaussian shape of the beams in the estimation of the flux density.
This is done applying a correction factor to the IFCAMEX flux
density estimation obtained comparing the flux density of a sim-
ulated Gaussian test source of a given scale R with that of source
convolved with the effective non-Gaussian beam of the detector
at each of the LFI frequencies. This correction factor is small,
typically < 1 %. Further details on this procedure can be found
in Massardi et al. (2009).

HFI The novel features of the HFI implementation exist to deal
with the challenging environment for source detection in the
high frequency channels. They aim to reduce the number of
spurious detections with minimal impact on the number of real
sources found. In addition to filtering the patch at the optimal
scale, each patch is filtered at four other scales bracketing the
optimal scale. The dependence of the amplitude of the detection
on the filter scale is compared to the predicted behaviour of a
point source. The χ2 between the observed and predicted val-
ues is minimized to provide an alternative measurement of the
amplitude. The values of the S/N, χ2 and the ratio of the two
measurements of the amplitude determine whether a source is
accepted or rejected. There is also an additional criterion for re-
moving spurious detections that is based on the number of con-
nected pixels, above a threshold, associated with a detection in
the filtered patch at the optimal scale. The idea behind this is
to reject artefacts that lie in narrow structures and may not be
completely removed by the filtering. For the given scale of the
wavelet, the number of expected connected pixels for a point
source is evaluated and this is compared with the number of con-
nections found for the detection. A combination of the S/N of the
detection and the ratio of these numbers of connected pixels is
used to determine whether rejection should occur. These addi-
tional criteria to reject detected artefacts help to improve the re-
liability of the catalogue without affecting its completeness and
the rest of its statistical properties.

2 http://max.ifca.unican.es/IFCAMEX

Fig. 2. The Galactic and extragalactic zones used to define the
S/N thresholds to meet the reliability target. The figure is a full-
sky Mollweide projection. See text for further details.

2.3. Selection criteria

The source selection for the PCCS is made on the basis of the
S/N. However, the background properties of the Planck maps
vary substantially depending on frequency and part of the sky.
Up to 217 GHz, the CMB is the dominant source of confusion
at high Galactic latitudes. At high frequencies, confusion from
Galactic foregrounds dominates the noise budget at low Galactic
latitudes, and the cosmic infrared background at high Galactic
latitudes. The SNR has therefore been adapted for each particu-
lar case.

On the other hand, the driving goal of the ERCSC was reli-
ability greater than 90 %. In order to increase completeness and
explore possibly interesting new sources at fainter flux density
levels, however, the initial overall reliability goal of the PCCS
was reduced to 80 %. The S/N thresholds applied to each fre-
quency channel have been determined, as far as possible, to meet
this goal. The reliability of the catalogues has been assessed us-
ing the internal and external validation described in Sect. 3.

At 30, 44, and 70 GHz, the reliability goal alone would per-
mit S/N thresholds below 4. A secondary goal of minimizing the
upward bias on fainter flux densities (Eddington bias; Eddington
1940) led to the imposition of an S/N threshold of 4.

At higher frequencies, where the confusion caused by the
Galactic emission starts to become an issue, the sky has been
divided into two zones, one Galactic (52 % of the sky) and one
extragalactic (48 % of the sky), using the G45 mask defined in
Planck Collaboration XV (2013). The zones are shown in Fig. 2.
At 100, 143, and 217 GHz, the S/N threshold needed to achieve
the target reliability is determined in the extragalactic zone, but
applied uniformly on sky. At 353, 545, and 857 GHz, the need to
control confusion from Galactic cirrus emission led to the adop-
tion of different S/N thresholds in the two zones. This strategy
ensures interesting depth and good reliability in the extragalac-
tic zone, but also high reliability in the Galactic zone. The extra-
galactic zone has a lower threshold than the Galactic zone. The
S/N thresholds are given in Table 1.

2.4. Photometry

For each source in the PCCS we have obtained four different
measures of the flux density. They are determined by the source
detection algorithm: aperture photometry; point spread function
(PSF) fitting; and Gaussian fitting. Only the first is obtained from
the filtered maps, and the other measures are estimated from the
full-sky maps at the positions of the sources. The source de-

4
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tection algorithm photometry, the aperture photometry and the
PSF fitting use the Planck band average effective beams, calcu-
lated with FEBeCoP (Fast Effective Beam Convolution in Pixel
space) (Mitra et al. 2011; Planck Collaboration IV 2013; Planck
Collaboration VII 2013). Notice that only the PSF fitting uses a
model of the PSF that depends on the position of the source and
the scan pattern.

Detection pipeline photometry (DETFLUX). As described in
Sect. 2.2, the detection pipelines assume that sources are point-
like. The amplitude of the detected source is converted to flux
density using the area of the beam and the conversion from map
units into intensity units. If a source is resolved its flux density
will be underestimated. In this case it may be better to use the
GAUFLUX estimation.

Aperture photometry (APERFLUX). The flux density is esti-
mated by integrating the data in a circular aperture centred at the
position of the source. An annulus around the aperture is used to
evaluate the level of the background. The annulus is also used to
make a local estimate of the noise to calculate the uncertainty in
the estimate of the flux density. The flux density is corrected for
the fraction of the beam solid angle falling outside the aperture
and for the fraction of the beam solid angle falling in the annu-
lus. The aperture photometry was computed using an aperture
with radius equal to the average FWHM of the effective beam,
and an annulus with an inner radius of 1 FWHM and an outer
radius of 2 FWHM. The effective beams were used to compute
the beam solid angle corrections. For details see Appendix A.1.

PSF fit photometry (PSFFLUX). The flux density is obtained
by fitting a model of the PSF at the position of the source to the
data. The model has two free parameters, the amplitude of the
source and a background offset. The PSF is obtained from the
effective beam. For details see Appendix A.2.

Gaussian fit photometry (GAUFLUX). The flux density is ob-
tained by fitting a Gaussian model to the source. The Gaussian
is centred at the position of the source and its amplitude, size
and shape is allowed to vary, as is the background offset. The
flux density is calculated from the amplitude and the area of the
Gaussian. For details see Appendix A.3.

Figure 3 shows a comparison between DETFLUX flux den-
sities at 100 GHz and the other three estimates. DETFLUX has
been chosen as the reference photometry because is the photom-
etry used in the selection process and the only one estimated
directly from the filtered patches (this implies a attenuation of a
factor of 2 of the background fluctuations which allows a much
more robust estimation of the faintest flux densities). The disper-
sion increases at lower S/N and near the Galactic plane, where
the different estimators behaves differently in the presence of
a strong background (indicated by grey points). At higher lati-
tudes the agreement is much better for bright sources (the red
points). This figure illustrate the reason to include four different
flux density estimators that provide complementary information
on the same object, for example is the object is extended or near
the Galactic plane (see Sect. 5.2).
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recovered flux densities (DETFLUX).

2.5. Comparison between MHW2 pipelines

In order to ensure the internal consistency of the whole cata-
logue, we have checked that both implementations of the MHW2
algorithm are equivalent. Both were run on the LFI nominal
maps producing two sets of catalogues and the outputs from both
implementations have been compared (see Fig. 4 as example).
We have studied the number of sources detected by both imple-
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mentations (“matched”) and the number of sources detected by
only one (“non-matched”). We have also compared the native
(DETFLUX) photometry from both implementations. As shown
in Fig. 4 for the 30 GHz channel, the only differences between
the detections obtained by both implementations appear near the
threshold where small changes in S/N values make the difference
between a source being detected or not. In any case these differ-
ences are always below 10 % in the faintest bin. More important
is the good agreement between photometric results from the two
pipelines.

3. Validation of the PCCS

The PCCS contents and the four different flux-density estimates
have been validated by simulations (internal validation) and
comparison with other observations (external validation). The
validation of the non-thermal radio sources can be done with
a large number of existing catalogues, whereas the validation
of thermal sources is mostly done with simulations. Detections
identified with known sources have been marked in the cata-
logues.

3.1. Internal validation

The catalogues for the HFI channels have primarily been vali-
dated through an internal Monte Carlo quality assessment (QA)
process in which artificial sources are injected in both real maps
and simulated maps. For each channel, we calculate statistical
quantities describing the quality of detection, photometry and
astrometry for each detection code. The detection is described
by the completeness and reliability of the catalogue: complete-
ness is a function of intrinsic flux density, the selection thresh-
old applied to detection (S/N), and location, while reliability is
a function only of the detection S/N. The quality of photome-
try and astrometry is assessed by direct comparison of detected
position and flux density with the known parameters of the arti-
ficial sources. An input source is considered to be detected if a
detection is made within one beam FWHM of the injected posi-
tion.

The completeness is determined from the injection of unre-
solved point sources into the real maps. Bias due to the super-
imposition of sources is avoided by preventing injection within
an exclusion radius of σb around both existing detections in the
real map and previously injected sources. The flux from real and
injected point sources contribute to the noise estimation for each
detection patch, which reduces the S/N of all detections and bi-
ases the completeness. We prevent this effect by determining the
noise properties on the maps before injecting sources, and have
verified that remaining bias on detection and parameter esti-
mates due to injected sources is negligible. The injected sources
are convolved with the effective beam (Planck Collaboration II
2013; Planck Collaboration VI 2013).

We use two cumulative reliability estimates for the HFI cat-
alogues. The first, which we will call simulation reliability, is
determined from source injection into simulated maps and is de-
fined as the fraction of detected sources that match the positions
of injected sources. If the simulations are accurate, such that the
spurious and real detection number counts mirror the real cata-
logue, the reliability is exact. To accept the simulations, we re-
quire that they pass the internal consistency tests outlined be-
low. Simulation reliability is used for the 100, 143, and 217 GHz
channels.

The simulations used to calculate simulation reliability con-
sist of realisations of CMB, instrumental noise and the dif-

fuse Galactic emission component of the FFP6 simulations (a
set of realistic simulations based on the Planck Sky Model;
Planck Collaboration XII 2013; Planck Collaboration ES 2013;
Delabrouille et al. 2012). We require that the simulated cata-
logues pass two internal consistency tests: that they have the
same injected source completeness as the real catalogues cal-
culated as outlined above; and that they have total detected num-
ber counts, as a function of S/N, that are consistent with those
in the real data. The intrinsic number counts are assumed to be
power law functions of flux density and are fitted to the detection
counts at higher flux densities, where the catalogues are reliable
and complete, and extrapolated to lower flux densities. Sources
are injected with random positions.

The second reliability estimator is applied to the 353, 545,
and 857 GHz channels, where the simulations fail our internal
consistency tests (due to deficiencies in the simulations of diffuse
dust emission). In the absence of accurate simulations capable
of producing realistic realisations of spurious detections, we use
an approximate reliability criterion that we will call injection
reliability. Injection reliability makes use of source injection into
the real maps to determine number counts of matched sources. If
the fiducial input source model is accurate, the matched counts
are a good estimate of the real detection counts in the catalogue.
To form a reliability estimate, we take the ratio per S/N bin of
the matched number counts over the number counts of the real
catalogue (the latter of which is the sum of real and spurious
number counts).

The input flux density model is assumed to be a power law
and is fitted in the same way as for the simulation reliability. The
extrapolation of the input source model to lower flux densities
is the main source of uncertainty in the injection reliability esti-
mate. However, it is also subject to bias due to the Poisson fluctu-
ations of number counts in the real catalogue. The total numbers
are large enough at low S/N in the higher frequency channels
that the measurement of the spurious bump is robust to these
fluctuations. At higher S/N, however, we take as reliable any bin
where the difference between expected real and measured total
number counts is smaller than twice the Poisson noise of the to-
tal number counts. To minimise bias from fluctuations, we also
assume the catalogues are completely reliable at S/N > 10. We
have verified that the two reliability estimates are consistent with
one another at 217 GHz, the only frequency where they can both
be applied.

3.1.1. Completeness

We have estimated the completeness of each of the HFI cat-
alogues in the 48 % extragalactic zone shown in Fig. 2. We
have also estimated completeness in the larger zones outside
two Galactic dust masks shown in Fig. 5: the 85 % zone for
100 GHz and 143 GHz, and the 65 % zone for 217 GHz. These
zones match those assumed for the reliability estimate at those
channels. The completeness estimates are shown in Fig. 6, along
with full-sky maps of the sensitivity, defined as the flux density
at 50 % differential completeness.

3.1.2. Reliability

The cumulative reliability, or fraction of detections above a given
S/N that match a real source, is determined using the simulation
reliability estimate for channels up to and including 217 GHz,
and the injection reliability estimate at higher frequencies. These
are shown in the right column of Fig. 6. For 100 GHz and
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Fig. 5. The Galactic dust masks used to estimate completeness
and reliability for some of the HFI channels. The unmasked
zones correspond to sky fractions of 65 % and 85 %. The figure
is a full-sky Mollweide projection. See text for further details.

143 GHz, the reliability is calculated using the 85 % Galactic
dust mask, for 217 GHz using the 65 % Galactic dust mask,
and for the other channels using the 48 % extragalactic zone.
Injection reliability cannot accurately resolve the small depar-
tures from reliability at S/N > 5.8, due to Poisson noise. Some
bins above this limit show departures from full reliability at
greater than 2σ at 545 GHz and 857 GHz and these are respon-
sible for the exaggerated stepping of the reliability. These are
likely purely statistical and are a limitation of the precision of
injection reliability at higher S/N.

3.1.3. Photometry and Astrometry

For the HFI channels we characterize the accuracy of source
photometry by comparing the native flux density estimates
(DETFLUX) of matched sources to the known flux densities of
sources injected into the real maps. Examples of the distributions
of photometric errors, for 143 GHz and 857 GHz, are shown in
Fig. 7, which presents histograms of the quantity ∆S /σS , where
∆S is the difference between the estimated and the injected flux
densities, and σS is the flux density uncertainty. The photomet-
ric accuracy is a function of S/N, with faint detections affected
by upward bias due to noise fluctuations. At lower HFI frequen-
cies, the DETFLUX estimates are unbiased for bright sources.
At higher HFI frequencies, the DETFLUX estimates are biased
low. Table 2 shows the DETFLUX bias per channel as well as the
standard deviation of ∆S /σS (which would be unity for Gaussian
noise).

We characterize the accuracy of the astrometry by calculat-
ing the radial position offset between the positions of detected
sources and the known positions of the sources injected into the
real maps. The distribution of the radial offsets is shown in Fig. 7
for 143 GHz and 857 GHz.

3.2. External validation

3.2.1. Low frequencies: 30, 44, and 70 GHz

At the three lowest Planck frequencies, it is possible to vali-
date the PCCS source identifications, completeness, reliability,
positional accuracy, and in some case even flux density accu-
racy using external data sets, particularly large-area radio sur-
veys. This external validation was undertaken using the follow-
ing catalogues and surveys: (1) the full-sky NEWPS catalogue,
based on WMAP maps (López-Caniego et al. 2007; Massardi

Table 2. Native photometry (DETFLUX) bias (mean multiplica-
tive), photometric recovery uncertainty, and median radial posi-
tion uncertainty from the internal validation, all calculated in the
extragalactic zone.

Channel DETFLUX biasa stdev(∆S /σS ) Position error
[arcmin]

100 1.05 1.33 1.20
143 1.00 0.95 0.96
217 0.97 2.79 0.75
353 0.96 2.49 0.73
545 0.96 1.97 0.72
857 0.92 7.06 0.65

a For S/N > 8.

et al. 2009); (2) in the southern hemisphere the AT20G survey
at 20GHz (Murphy et al. 2010); (3) in the northern hemisphere,
where no large-area survey at similar frequencies like AT20G
is available, we used CRATES (Healey et al. 2007). These cat-
alogues have similar frequency coverage and source density as
the PCCS. We also compared the PCCS with thePlanck ERCSC:
this provides a useful check on the PCCS pipelines, although
the ERCSC is based on a subset of the data used for the PCCS
and is not an independent catalogue. As discussed in Planck
Collaboration VII (2011), more than 95 % of the ERCSC sources
had a clear counterpart in external catalogues.

For this comparison, a PCCS source is considered reliably
identified if it falls within a circle of radius 0.65 times the Planck
effective beam FWHM (see Table 1) that is centred on a source
at the corresponding frequency in one of the above catalogues.
Of the four reference catalogues, only the ERCSC covers the
galactic plane and therefore for |b| < 2◦ (the AT20G Galactic cut)
the external validation relies on the previous identification effort
performed for the ERCSC (Planck Collaboration XIV 2011).

Owing to its better sensitivity, the PCCS detects almost all
the sources previously found by WMAP (Bennett et al. 2012).
Therefore, for studying completeness, deeper samples like the
AT20G or CRATES are needed. The problem is that those sam-
ples are at lower frequencies (20 and 8.4 GHz, respectively) than
the LFI, so spectral effects or variability could in some cases put
the sources below the PCCS detection limit. The completeness
values estimated by comparison with these catalogues should
thus be considered as lower limits.

An alternative completeness estimate can be derived from
knowledge of the noise in the maps. If the native flux density
estimates are subject to Gaussian errors with amplitude given
by the noise of the filtered patches, the completeness per patch
should be

C(S ) =
1
2

+
1
2

erf
(

S − qσ(θ, φ)
σS (θ, φ)

)
, (2)

where σ2
S (θ, φ) is the variance of the filtered patch located at

(θ, φ), q is the S/N threshold and erf(x) = 2
√
π

∫ x
0 e−t2

dt is the
standard error function. The true completeness will depart from
this limit when the simplifying assumptions of non-Gaussian
noise and uniform Gaussian beams are broken. The cumulative
completeness is derived by making use of a model of the source
counts N(S ) (de Zotti et al. 2005).

Figure 8 shows the estimated completeness and a summary
of the external validation results at the LFI channels (30, 44, and
70 GHz), after combining the information from the four refer-
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Fig. 6. Results of the internal validation for HFI channels. The quantities plotted are (left) completeness per bin, (middle) a map
of sensitivity (the 50 % completeness threshold in flux density), and (right) cumulative reliability as a function of S/N. The black
curves in completeness are for the extragalactic zone described in Sect. 2.3. The red curves in completeness are for smaller masks
used for the reliability estimation (if the extragalactic zone was not used). See text for discussion of the limitations of the injection
reliability estimate used for 353 GHz and above.
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Fig. 7. Example distributions of photometric recovery (left) and positional error (right) for 143 GHz (top row) and 857 GHz (bottom
row).
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Fig. 8. External validation summary (completeness and number
of non-matched sources) of the 30, 44, and 70 GHz channels.

ence radio catalogues. The completeness at 90 % level are also
shown in Table 1.

The unmatched sources are those sources detected by the
PCCS but not present in the reference catalogues. However,

many of them have been confirmed by a multifrequency detec-
tion method for the LFI frequencies or have been detected in
an adjacent channel for the HFI frequencies. These sources are
therefore robust detections and therefore they are probably previ-
ously undetected sources at frequencies between 10–20 GHz or
in IRAS. We consider the remaining ones to be potentially spuri-
ous detections, but cross-matching with additional data sets must
be done before any further conclusions can be drawn. Strong
variability or faint thermal emission are two possible explana-
tions for their appearance. Therefore, these sources constitute an
interesting sample for further analyses. The status of the cross-
matching is indicated in the EXT VAL column in the PCCS (see
Sect. 5.1).

An absolute validation of the extracted photometry can be
obtained by comparing the PCCS measurements with external
data sets.

The Planck Australia Telescope Compact Array (ATCA) Co-
eval Observations (PACO, Massardi et al. 2011; Bonavera et al.
2011; Bonaldi et al. 2013) have provided flux density measure-
ments of well-defined samples of Australia Telescope 20 GHz
(AT20G) radio sources at frequencies below and overlapping
with Planck frequency bands, obtained almost simultaneously
with Planck observations. A total of 482 sources have been ob-
served in the frequency range between 4.5 and 40 GHz in the pe-
riod between 2009 July and 2010 August. The multiple PACO
observations have been averaged to a single flux density and
therefore the uncertainties reflect the variability of the sources
instead of the proper flux density accuracy of the measure-
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Fig. 9. Comparison between the PACO sample (Massardi et al.
2011; Bonavera et al. 2011; Bonaldi et al. 2013) and the ex-
trapolated, color-corrected PCCS flux densities (DETFLUX) at
32 (top) and 40 GHz (bottom). The multiple PACO observations
of each source have been averaged to a single flux density and
therefore the uncertainties reflect the variability of the sources
instead of the proper flux density accuracy of the measurements
(a few mJy).

ments, the order of a few mJy. The comparison was performed
at the same frequencies of PACO by extrapolating the PCCS
flux densities using the spectral indices estimated between 30
and 44 GHz and taking into account the corresponding colour-
correction (Planck Collaboration II 2013; Planck Collaboration
VI 2013). At both 30 and 44 GHz the two flux density scales
appear to be in good overall agreement (−4 % ±8 % and 5 %
±10 %, respectively) with any difference attributable partly to
the background effect in the Planck measurements and partly
due to variability in the radio sources, since the PCCS and PACO
measurements were not exactly simultaneous (see Fig. 9).

The Metsähovi observatory is continuously monitoring
bright radio sources in the northern sky (Planck Collaboration
XV 2011) at 37 GHz. From their sample, sources brighter than
2 Jy were selected and their flux densities averaged to the period
of Planck observations used for the PCCS. As in the PACO case,
the uncertainties in the plot reflect the variability of the sources
during the Planck nominal mission period. The Planck measure-
ments were colour-corrected and extrapolated to the Metsähovi
frequency before the comparison (see Fig. 10). The Planck and
Metsähovi flux densities agree at the 0.2 % level with an uncer-
tainty of ±4 %.

On 2012 January 19–20, the Karl G. Jansky Very Large
Array (VLA) was employed by Rick Perley of the NRAO staff
to make observations of a number of bright, extragalactic radio
sources also detected by Planck within a month of that date. The
aim of these coordinated observations was to minimize scat-
ter caused by the variability of bright radio sources, most of
them blazars. The VLA observations were made at a number
of frequencies, spanning the two lowest LFI frequencies. Planck
data, colour-corrected and interpolated to the VLA frequencies
of 28.45 and 43.34 GHz were compared to nearly simultaneous
Planck observations (see Fig. 11 for the 43 GHz case). To lessen
the effect of Eddington-like bias in the Planck data, the fit was

10
0

10
1

Metsahovi Flux Density [Jy]

P
C

C
S

 F
lu

x
 D

e
n
s
it
y
 [
J
y
]

37 GHz [30−44]

1
0

0
1
0

1

10
0

10
1

Metsahovi Flux Density [Jy]

P
C

C
S

 F
lu

x
 D

e
n
s
it
y
 [
J
y
]

37 GHz [30−70]

1
0

0
1
0

1

Fig. 10. Comparison between the Metsähovi and the color-
corrected PCCS flux densities (DETFLUX) interpolated to
37 GHz using 30 and 44 GHz (top) and 30 and 70 GHz (bottom).
The multiple observations of each source have been averaged to
a single flux density and therefore the uncertainties reflect the
variability of the sources instead of the proper flux density accu-
racy of the measurements (a few mJy).

forced to pass through (0,0). The slopes of the fitted lines show
that the VLA and Planck flux densities agree to about 2 ± 1.6 %
at 28 GHz, with Planck slightly low. At 43 GHz the agreement
is not as good, with Planck PCCS flux densities running ∼ 6 %
high on average. This value, however, is driven by one source,
3C 84, known to be variable. If it is excluded, Planck and VLA
flux densities at 44 GHz agree to ∼ 0.5 ± 2.5 %. The VLA flux
density scale used in this comparison is the new one proposed by
Perley & Butler (in preparation for ApJS), based on observations
of Mars.

The acceptable agreement between Planck and external flux
densities gives us confidence that the Planck beam solid angles
used to calculate flux densities for the PCCS are well under-
stood.

3.2.2. Intermediate frequencies: 143 and 217 GHz

A similar comparison was made between Planck flux density
measurements of around 40 sources catalogued by the Atacama
Cosmology Telescope Team (Gralla and members of the ACT
team, in preparation). Planck 143 and 217 GHz measurements
were colour corrected and interpolated to match the band cen-
tres of the ACT 148 and 218 GHz channels. Since the ACT
measurements were made over a wider span of time than the
Planck ones, source variability introduces a scatter (see Fig. 12).
Nevertheless, on average, Planck and ACT observations agree to
1.0± 2.5 % at 148 GHz, and ∼ 3.0± 3.5 % at 218 GHz. If we ex-
clude 2–4 variable sources, the agreement at 218 GHz improves
to ∼ 1.0 ± 3.5 %.

3.2.3. High frequencies: 353, 545, and 857 GHz

Figure 13 shows a comparison between Planck flux densities at
353 GHz and those from two SCUBA catalogues (Dale et al.
2005; Dunne et al. 2000 [SLUGS]) at 850 µm. A colour cor-
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Fig. 11. Planck flux densities for bright sources observed within
a month of VLA observations at that frequency. Planck val-
ues (DETFLUX) were colour-corrected and interpolated to
∼ 28 GHz (top) and ∼ 43 GHz (bottom).
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Fig. 12. Comparison between ACT and Planck measurements
(DETFLUX; colour-corrected). Top panel: Planck measure-
ments were extrapolated to 148 GHz. Planck flux densities are
on average 1 % fainter (or ACT’s brighter). The uncertainty in
the slope is 0.025 = 2.5 %. Bottom panel: Planck measurements
were extrapolated to 218 GHz.The slope is 1.033: Planck flux
densities are high (or ACT’s low) by 3.3 ± 3.4 % on average.

rection of 0.898 has been applied to the Planck flux densi-
ties (Planck Collaboration VI 2013). The flux densities are in
broad agreement between the two catalogues. The uncertainties
in SCUBA measurements for extended sources make it difficult
to draw strong conclusions about the suitability of the four PCCS
flux density estimates.

The Herschel/SPIRE instrument (Griffin et al. 2010) is per-
forming many science programs, among which the wide surveys
(extragalactic and Galactic) can be used to cross-check the flux

densities of SPIRE and HFI at the common channels: 857 GHz
with 350 µm, and 545 GHz with 500 µm. The H-ATLAS sur-
vey (Eales et al. 2010) is of particular interest since many com-
mon bright sources (typically with flux densities above a few
hundred mJy) can be compared.

Figure 14 shows the comparison between Planck flux den-
sities at 545 and 857 GHz and four Herschel catalogues, HRS
(Boselli et al. 2010), Kingfish (Kennicutt et al. 2011), HeViCS
(Davies et al. 2013), and H-ATLAS (Eales et al. 2010). Inter-
calibration offsets between the two instruments were corrected
for prior to comparison (Planck Collaboration VIII 2013). To
compare with 545 GHz flux densities, the Herschel 500 µm data
have been extrapolated to 550 µm (545 GHz) assuming a spec-
tral index of 2.7, which is the mean value found for the matched
objects. At 350 µm (857 GHz) no correction has been applied
since the Herschel and Planck filters are nearly the same.

At low flux densities, the smallest dispersion is achieved
by the DETFLUX photometry because the filtering process re-
moves structure not associated with compact sources. At high
flux densities, the brightest objects in the Kingfish survey are
extended galaxies that are resolved by Planck so their flux
densities are underestimated by DETFLUX, APERFLUX and
PSFFLUX. GAUFLUX accounts for the size of the source and
is therefore able to estimate the flux density correctly. For ex-
tended sources like these, we recommend the use of GAUFLUX
(see also Sect. 5.2).

All these results show that the flux density measurements
in the PCCS are in reasonable agreement with those obtained
at ground-based observatories or with higher resolution instru-
ments like SCUBA and those of Herschel. That agreement, in
turn, means that the solid angles of Planck beams are understood
to comparable accuracy.

3.3. Comparison between internal and external validation

To check the consistency of the two validation processes, we ex-
tend the HFI internal validation to 70 GHz and compare with the
results of the external validation. Simulations were constructed
at 70 GHz as outlined in Sect. 3.1 and the injected sources were
extracted using the HFI–MHW extraction algorithm. The sim-
ulations passed the internal consistency tests discussed in Sect.
3.1, allowing us to determine the reliability using simulation re-
liability estimate, as was the case for 100–217 GHz.

Figure 15 shows the completeness and reliability for the
HFI–MHW and LFI–MHW catalogues as estimated using their
respective validations at 70 GHz. We compare the external val-
idation of the LFI–MHW catalogue with the internal validation
of the HFI–MHW catalogue. Both the reliability and the com-
pleteness determined from each of the validations are in good
agreement.

3.4. Impact of Galactic cirrus at high frequency

The intensity fluctuations in the Planck high frequency maps
are dominated by faint star-forming galaxies and Galactic cirrus
(Condon 1974; Hacking et al. 1987; Franceschini et al. 1989;
Helou & Beichman 1990; Toffolatti et al. 1998; Dole et al. 2003;
Negrello et al. 2004; Dole et al. 2006). The filamentary structure
of Galactic cirrus at small angular scales (from a few tens of arc-
seconds up to a few tens of arcminutes or a degree) is often visi-
ble as knots by Planck. These compact sources as seen by Planck
with it low resolution appear as filamentary structures when
viewed by high-resolution instruments such as Herschel/SPIRE.
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Fig. 13. Comparison between SCUBA and Planck flux densities at 353 GHz. All four PCCS flux densities estimates are shown, from
left to right, APERFLUX, PSFFLUX, GAUFLUX, and DETFLUX. A colour correction of 0.898 has been applied to the Planck
flux densities. The vertical dashed line shows the 90 % completeness level of the PCCS. The diagonals show the line of equality
between the flux densities.

An example is the Polaris field (see Fig. 16), where Herschel
does not detect sources above the extragalactic density counts,
but Planck detects a sharply increasing number of sources with
interstellar brightness that are coincident with filaments.

Using the few Herschel fields available, we are able to estab-
lish a statistical evaluation of how the spurious source density
behaves. We consider real sources to be dense structures that
are not part of the interstellar quasi-stationary turbulent cascade.
The other ones are artefacts of the detection algorithms on the
general interstellar structure and depend strongly on the angular
resolution used. They are not useful as sources in a catalogue.

To control the spurious detections induced by the cirrus fila-
ments, we apply higher S/N thresholds in the Galactic zone for
353, 545, and 857 GHz (see Table 1). These thresholds remove
the bulk of the spurious sources identified in the Herschel SPIRE
fields in this zone, while preserving the majority of the extra-
galactic compact objects.

For the extragalactic zone, we note that there is a local
threshold in brightness that we estimate to be approximately 3–
5 MJy sr−1 at 857 GHz, above which, the probability of cirrus-
induced spurious detections increases. This is not used to thresh-
old the catalogue, but could be used as a further control of spu-
rious detections.

In some areas the situation is more complicated. Herschel
does detect “real” Galactic (protostellar) sources in filaments in
brighter regions (like the Aquila rift, André et al. 2010). These
sources often are not fully unresolved but are embedded in an
envelope and the filamentary structure. These sources usually
lie in sky regions of much higher brightnesses, and are located
within the Galactic zone.

We suggest a local definition of the presence of “real” galac-
tic sources: the power spectra of the maps at 857 GHz keep their
power law behaviour all the way from large scales measured
by Planck to the smallest scales measured by Herschel (with a
very good overlap), with the flat part of the power spectrum after
noise removal being at the level set by extragalactic sources. The
power spectra of the fields considered in this analysis are shown
in Fig. 17.

4. Characteristics of the PCCS

4.1. Sensitivity and positional uncertainties

Table 1 shows the effective beam FWHM, the minimum flux
density (after excluding the faintest 10 % of sources) and the
90 % completeness level of all nine lists in the PCCS. As an il-
lustration, Fig. 18 shows the completeness level of PCCS at high
Galactic latitude (|b| > 30◦) relative to the previous ERCSC and
other wide area surveys at comparable frequencies. It is clear
from this comparison that the sensitivity of the PCCS is a sig-
nificant improvement on that of the ERCSC (see Sect. 4.3) and
that both catalogues are more complete then the WMAP ones.
Note that the PCCS detection limit increases inside the Galactic
plane.

Figure 6 shows how the sensitivity of the catalogues varies
across the sky due to the scanning strategy (the minimum noise is
at the ecliptic poles where the sky is observed many times) and
due to the effect of Galactic emission (near the Galactic plane
and in particular Galactic regions).

The positional accuracy of the ERCSC was confirmed to be
better than FWHM/5 (Planck Collaboration VII 2011; Bonavera
et al. 2011). In the case of the PCCS we have found sim-
ilar results as expected, since we have made corrections for
two types of pointing errors that affected the ERCSC (Planck
Collaboration VII 2011). The first was due to time-dependent,
thermally-driven misalignment between the star tracker and the
telescope (Planck Collaboration I 2013). The second was due to
uncorrected stellar aberration across the focal plane. The mis-
alignment resulting from stellar aberration is of the same magni-
tude as the positional uncertainties, and hence was not apparent
in the ERCSC.

As explained in Sect. 3.2, by comparing the positions de-
rived with the detection method used to build the PCCS with
the PACO sample (Massardi et al. 2011; Bonavera et al. 2011;
Bonaldi et al. 2013), we have estimated the distribution of the
pointing uncertainties up to 353 GHz. In the case of 545 and
857 GHz we derived the same quantities from the comparison
with Herschel sources. The median values of these distributions
are reported in Table 1. The estimated positional uncertainties

12



Planck Collaboration: Planck Catalogue of Compact Sources

Fig. 14. Comparison between Herschel and Planck flux densities at 545 GHz (top) and 857 GHz (bottom). All four PCCS flux
densities estimates are shown, from left to right, APERFLUX, PSFFLUX, GAUFLUX, and DETFLUX. The Herschel 500 µm data
have been extrapolated to 550 µm (545 GHz) assuming a spectral index of 2.7. The vertical dashed line shows the 90 % completeness
level of the PCCS. The diagonals show the line of equality between the flux densities.

are below FWHM/5. These results are in good agreement with
the values derived from the internal validation (see Table 2).

4.2. Statistical properties of the PCCS

Table 3 shows the numbers of sources internally matched within
PCCS by finding them in neighbouring channels. It shows the
number of sources matched both above and below in frequency
(i.e., sources at 100 GHz found in both the 70 and 143 GHz cat-
alogues), those matched either above or below in frequency (a
less stringent criterion), and the fraction of sources so matched.
A source is considered to be matched if the positions are closer
than the larger FWHM of the two channels. A catalogue was
extracted from the IRIS 100 µm map (Miville-Deschênes &
Lagache 2005) using the MHW2 pipeline, and that is used as the
neighbouring channel above 857 GHz. The IRIS mask, which re-
moves around 2.1 % of the sky, was applied to the 857 GHz cat-
alogue before doing this comparison, and this reduces the num-
ber of sources to 24119, a decrease of about 1 %. The number of
matches referred for the 857 GHz channel only includes sources

outside of the IRIS mask. For the 30 GHz channel, the matches
were evaluated using the channel above, 44 GHz, only. The low
percentage of internal matches of the 30 GHz channel (matched
only with 44 GHz) results from two factors: the generally neg-
ative spectral index of the sources at these frequencies and the
relatively low sensitivity of the 44 GHz receivers.

Figure 19 shows histograms of the spectral indices obtained
from the matches between contiguous channels. As expected,
the high frequency channels (545 and 857 GHz) are dominated
(> 90 %) by dusty galaxies and the low frequency ones are dom-
inated (> 95 %) by synchrotron sources. In addition, two strik-
ing results obtained making use of the ERCSC are clearly seen
also in Figure 19: i) the difference between the median values of
the spectral indices below 70 GHz indicates that there is a sig-
nificant steepening in blazar spectra as demonstrated in Planck
Collaboration XIII 2011; ii) the high frequency counts (at least
for frequencies ≤ 217 GHz) of extragalactic sources are domi-
nated at the bright end by synchrotron emitters, not dusty galax-
ies (Planck Collaboration Int. VII 2013).
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Fig. 15. Cumulative reliability (top panel) and differential com-
pleteness (bottom panel) of the HFI–MHW and LFI–MHW cat-
alogues at 70 GHz as determined by their respective internal and
external validation procedures.

The deeper completeness levels and, as a consequence, the
higher number of sources compared with its predecessor the
ERCSC (see next section), will allow the extension of previous
studies to more sources and to fainter flux densities. However,
they are beyond the purpose of this paper and will be addressed
in future publications.

4.3. Comparison with the Planck ERCSC

The Early Release Compact Source Catalogue is a catalogue
of high-reliability sources, both Galactic and extragalactic, de-
tected over the full sky, in the first Planck all-sky survey. One of
the primary goals of the ERCSC was to provide an early cata-
logue of sources for follow-up observations with existing facil-
ities, in particular Herschel, while they were still in their cryo-
genic operational phase. The PCCS differs from the ERCSC both
in the data and the philosophy.

The data used to built the ERCSC consisted of one complete
survey and 60 % of the second survey included in the maps. The
data used for the PCCS consists of two complete surveys and
60 % of the third survey. Moreover, our knowledge of the in-

Fig. 16. The Polaris field observed by Planck (top) and Herschel
(bottom) at 857 GHz (350 µm). Structures that appear to be com-
pact sources to Planck, shown with yellow circles, are revealed
to be cirrus knots when observed at higher resolution. They are
located in regions with bright backgrounds, which provides a
proxy for identifying them. The declination grid has spacing of
30 arc-minutes.

struments has improved during this time, and this translates into
a better calibration and quality of the maps, and better charac-
terization of the beams (Planck Collaboration II 2013; Planck
Collaboration VI 2013). The beam size and shapes are crucial
to obtaining precise measurements of the flux densities. The
change in beam sizes between those used for ERCSC and the
present values used for the PCCS is of the order of 2 % in the
LFI channels and ∼ 8 % in the HFI ones. Figure 20 shows a
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Fig. 17. Power spectra of six fields observed by both Planck (red)
and Herschel (black). Fits to the spectra are shown in blue. There
is a good agreement between Planck and Herschel in the com-
mon multipole range (typically ` < 3000). Fields are, from top to
bottom: (a) Aquila; (b) Polaris; (c) Spider; (d) Draco; (e) Gama;
(f) FLS; and (g) XMM-LSS. No real Galactic sources are ex-
pected in fields (b) – (g), only extragalactic sources (correlated
and Poisson components) and cirrus at larger angular scales.
Real Galactic sources are detected, however, in (a) (André et al.
2010): the power spectrum is orders of magnitude above the
other fields, demonstrating the need to separate the Galactic from
extragalactic zones, and the use of the background brightness as
a proxy to estimate the cirrus contamination.

Table 3. Summary of sources matched between neighbouring
channels.

Channel No. sources No. matched Frac. matched

Above and Above or
below below

30a . . . . 1256 . . . 629 50.1%
44 . . . . . 731 530 664 90.8%
70 . . . . . 939 552 815 86.8%
100 . . . . 3850 772 2758 71.6%
143 . . . . 5675 2454 4645 81.9%
217 . . . . 16070 3351 10624 66.1%
353 . . . . 13613 8029 12079 88.7%
545 . . . . 16933 9382 14535 85.8%
857b . . 24381 6904 18061 74.9 %

a The 30 GHz channel is only matched with the 44 GHz channel above.
b The 857 GHz channel is matched above with a catalogue extracted

from the IRIS maps using the HFI–MHW. Both catalogues were cut
with the IRIS mask prior to matching.

comparison at 143 GHz between the photometries from ERCSC
and PCCS. Similar results are obtained at all the other channels.

The primary goal of the ERCSC, to provide a reliable cat-
alogue, was successfully accomplished. The goal of the PCCS
is to increase the completeness of the catalogue while main-
taining a good global reliability (> 80 % by construction). This
has led to the higher number of detections per channel (a factor
∼2–4 more sources) and better sensitivity achieved by the PCCS
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Fig. 18. The PCCS completeness level outside the Galactic
plane (see Table 1) is shown relative to other wide area sur-
veys. The ERCSC completeness levels have been obtained from
Planck Collaboration XIII (2011) up to 70 GHz and Planck
Collaboration Int. VII (2013) for the other channels, while
the WMAP ones are from González-Nuevo et al. (2008) up to
41 GHz and Lanz et al. (2013) for 61 and 94 GHz. The sen-
sitivity levels for Herschel SPIRE and PACS instruments are
from Clements et al. (2010) and Berta et al. (2010), respectively.
The other wide area surveys shown as a comparison are: GB6
(Gregory et al. 1996), CRATES (Healey et al. 2007), AT20G
(Murphy et al. 2010), PACO (Bonavera et al. 2011), SPT (Vieira
et al. 2010), ACT (Marriage et al. 2011) and IRAS (Beichman
et al. 1988).

(see also Fig. 18 for a direct comparison between the PCCS and
ERCSC completeness levels).

5. The PCCS: access, content and usage

The PCCS is available from the ESA Planck Legacy Archive3.
The source lists contain 24 columns. The 857 GHz source list
has six additional columns that consist of the band-filled aperture
flux densities and associated uncertainties in the three adjacent
frequency channels, 217–545 GHz, for each source detected at
857 GHz.

5.1. Catalogue content and usage

Detailed information about the catalogue content and format can
be found in the Explanatory Supplement (Planck Collaboration
ES 2013) and in the FITS files headers. Here we summarize the
most important features of the catalogues. The key columns in
the catalogues are:

– Source identification: NAME (string).
– Position: GLON and GLAT contain the Galactic coordinates,

and RA and DEC give the same information in equatorial
coordinates (J2000).

– Flux density: the four estimates of flux density (DETFLUX,
APERFLUX, PSFFLUX, and GAUFLUX) in mJy, and their
associated uncertainties (with the ERR suffix).

3 http://pla.esac.esa.int/pla/pla.jnlp
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– Source extension: the EXTENDED flag is set to 1 if a source
is extended. See the definition below.

– Cirrus indicator: the CIRRUS N column contains a cirrus in-
dicator for the HFI channels. See the definition below.

– External validation: the EXT VAL contains a summary of
the external validation for the LFI channels. See the defini-
tion below.

– Identification with ERCSC: the ERCSC column indicates the
name of the ERCSC counterpart, if there is one, at this chan-
nel.

A source is classified as extended if

FWHMeff ≥ 1.5 FWHMnom, (3)

where FWHMnom is the nominal beam size for the selected chan-
nel and the quantity FWHMeff is calculated as the geometric
mean of the two FWHM values obtained from the Gaussian fit
to that source.

FWHMeff =
√

FWHM1 FWHM2. (4)

In the upper HFI bands, sources that are extended tend to be
associated with structure in the Galactic interstellar medium
although individual nearby galaxies are also extended sources
as seen by Planck (see Planck Collaboration XVI 2011). The
choice of the threshold being set at 1.5 times the beam width
is motivated by the accuracy with which source profiles can be
measured from maps where the point spread function is criti-
cally sampled (1.′7 pixel scale for a FHWM of ∼4′). Naturally,
faint sources for which the Gaussian fitting failed do not have
the EXTENDED flag set.

Sources in the HFI channels have a cirrus indicator,
CIRRUS N. This is the number of sources detected at 857 GHz
(using a uniform S/N threshold of 5) within a 1◦ radius of the
source. Many 857 GHz detections at this S/N threshold in the
Galactic region will be from cirrus knots, so it provides a useful
indicator of the presence of cirrus.

The EXT VAL column summarizes the cross-matching with
external catalogues. For the LFI channels this is the set of radio
catalogues used in the external validation (see Sect. 3.2). For
HFI channels it is the catalogue extracted from the IRIS map
(see Sect. 4.2). The EXT VAL flag has the value of 0, 1, or 2,
based on the following conditions:

0: The source has no clear counterpart in any of the external
catalogues and it has not been detected in other Planck chan-
nels.

1: The source has no clear counterpart in any of the external
catalogues, but it has been detected in other Planck channels.

2: For the LFI channels, the source has a clear counterpart in
the radio catalogues. For the HFI channels, the source either
has a clear counterpart in the radio catalogues or in both the
IRIS catalogue and all the higher Planck channels.

This flag provides valuable information about the reliability of
individual sources: those flagged as EXT VAL= 2 are already
known, those with EXT VAL = 1 have been detected in other
Planck channels and are therefore potentially new sources, and
those with EXT VAL = 0 appear in only a single channel,
and thus are more likely to be spurious. For the LFI channels,
the Matrix Filters (Herranz et al. 2009) are used to determine
whether a source has been detected in other Planck channels.
For the HFI channels, the cross-matching is carried out a poste-
riori from the catalogues (see Sect. 4.2).

As described in Sect. 2.4, four measures of flux density are
provided in units of mJy. For extended sources, both DETFLUX
and PSFFLUX are likely to produce underestimates of the true
source flux density. Furthermore, at faint flux densities corre-
sponding to low S/N, the PSF and GAUSSIAN fits may fail.
This would be represented either by a negative flux density or by
a significant difference between the GAUFLUX and DETFLUX
values. In general, for bright extended sources, we recommend
using the GAUFLUX and GAUFLUX ERR values although
even these might be biased high if the source is located in a re-
gion of complex, diffuse foreground emission. Uncertainties in
the flux density measured by each technique are reflected in the
corresponding ERR column.

The median positional uncertainty, given in Table 1, is only a
statistical estimate for each band. Individual sources could have
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a larger positional offset depending on the local background rms
and S/N. As this quantity has been obtained by comparison with
external data sets it also takes into account any astrometric offset
in the maps.

5.2. Cautionary notes on the use of catalogues

In this section, we remind readers of the preliminary nature of
the PCCS and list some cautionary notes for users of the cat-
alogue. The PCCS is based solely on the nine frequency maps
derived from the nominal mission, which ended in November
2010. The HFI instrument continued to operate stably for an-
other 14 months after the end of the nominal mission, and the
LFI instrument is expected to complete an additional 5.4 full-sky
surveys not included in the PCCS. Thus the PCCS is based on
only a fraction of Planck data: approximately 1/3 in the case of
LFI. The observations following the nominal mission will also
allow for better control of systematic errors, which in turn is
likely to improve the quality and accuracy of a later, more com-
plete catalogue of Planck sources based on the entire mission.
Our understanding of the instrument (effective beam size, for
instance) has improved since the ERCSC was issued and will
surely continue to improve. Likewise, we can expect further im-
provements in the use of ground-based and other facilities to
validate properties of the catalogue, such as flux density scales.
Note the improvement over validation efforts for the ERCSC,
and the extension of external validation to 143 and 217 GHz
(Sect. 3.2.2). It is also reasonable to expect further refinements
in the algorithms used to detect sources and to measure their
properties. Finally, the PCCS does not address, as future cata-
logues will, the issue of polarization.

As noted earlier, the aim of the PCCS is to provide as com-
plete a list as possible of Planck sources with a reasonable degree
of reliability. The criteria used to include or exclude candidate
sources differ from channel to channel and in different parts of
the sky; they also are based on different S/N levels. These dif-
ferences were consequences of our desire to make the catalogue
as complete as possible, yet maintain > 80% reliability. These
differences have to be taken into account when using the PCCS
for statistical studies. On the other hand, we have endeavoured
to ensure that the flux density scales of the various channel cata-
logues are consistent. They appear to be at the few percent level
(see discusion in Planck Collaboration XI 2013).

We now turn to several specific cautions and comments for
users of the PCCS.

Variability: At radio frequencies, up to and including 217 GHz,
many of the extragalactic sources are highly variable. A small
fraction of them vary even on time scales of a few hours based
on observed changes in the flux density as a source drifts through
the different Planck horns (Planck Collaboration II 2013; Planck
Collaboration VI 2013). Follow-up observations of these sources
might show significant differences in flux density compared to
the values in the data products. Although the maps used for the
PCCS are based on 2.6 sky coverages, the PCCS provides only a
single average flux density estimate over all Planck data samples
that were included in the maps and does not contain any measure
of the variability of the sources from survey to survey.

Contamination from CO: At infrared/submillimetre frequen-
cies (100 GHz and above), the Planck bandpasses straddle en-
ergetically significant CO lines (see Planck Collaboration XIII

2013). The effect is the most significant at 100 GHz, where the
line might contribute more than 50 % of the measured flux den-
sity for some Galactic sources. Follow-up observations of these
sources, especially those associated with Galactic star-forming
regions, at a similar frequency but different bandpass, should
correct for the potential contribution of line emission to the mea-
sured continuum flux density of the source.

Photometry: Each source has multiple estimates of flux den-
sity, DETFLUX, APERFLUX, GAUFLUX and PSFFLUX, as
defined above. The appropriate photometry to be used de-
pends on the nature of the source. For sources that are un-
resolved at the spatial resolution of Planck, APERFLUX and
DETFLUX are most appropriate. Even in this regime, PSF or
Gaussian fits of faint sources fail and consequently these have
a PSFFLUX/GAUFLUX value of NaN (”Not a Number”). For
bright resolved sources, GAUFLUX might be most appropriate
although GAUFLUX appears to overestimate the flux density of
the sources close to the Galactic plane due to an inability to fit
for the contribution of the Galactic background at the spatial res-
olution of the data. For the 353–857 GHz channels, the complex
nature of the diffuse emission and the relative undersampling of
the beam produces a bias in DETFLUX, we recommend that
APERFLUX is used instead (see Fig. 14).

Calibration: The absolute calibration uncertainties of Planck
are sub-percentage for 30-217 GHz and are < 1.2% at 353 GHz.
For 545 and 857 GHz, the absolute calibration uncertainty is
< 10% (Planck Collaboration II 2013; Planck Collaboration VI
2013). For these two channels the calibration uncertainty is an
appreciable systematic error on the photometry, which is not in-
cluded in the internal validation (as it was not simulated) or the
external comparison with Herschel photometry (see Sect. 3.2.3)
as the inter-calibration between HFI and SPIRE was corrected
prior to comparison.

Colour correction: The flux density estimates have not been
colour corrected. Colour corrections are described in Planck
Collaboration II (2013) and Planck Collaboration VI (2013).

Cirrus/ISM: A significant fraction of the sources detected in the
upper HFI bands could be associated with Galactic interstellar
medium features or cirrus. The value of CIRRUS N in the cata-
logue can be used to flag sources that might be clustered together
and thereby associated with ISM structure. Candidate ISM fea-
tures can also be selected by choosing objects with EXTENDED
= 1 although nearby Galactic and extragalactic sources that are
extended at Planck spatial resolution will meet this criterion too.
The 857 GHz brightness proxy described in Sect. 3.4 can also be
used as indicator of cirrus contamination.

6. Conclusions

The PCCS lists sources extracted from the Planck nominal mis-
sion data in each of its nine frequency bands. By construction its
reliability is > 80 % and a special effort was made to use sim-
ple selection procedures in order to facilitate statistical analyses.
With a common detection method for all the channels and the
additional three photometries, spectral analysis can also be per-
formed safely. The deeper completeness levels and, as a conse-
quence, the higher number of sources compared with its prede-
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cessor the ERCSC, will allow the extension of previous studies
to more sources and to fainter flux densities. The PCCS is the
natural evolution of the ERCSC, but both lack polarization and
multi-frequency information. Future releases will take advantage
of the full mission data and they will contain information on
properties of sources not available in this release, including po-
larization and variability, and association of sources detected in
different bands.

This paper describes the construction and properties of this
preliminary catalogue. We have not attempted to exploit the
PCCS for science purposes, preferring instead to leave this to
future papers and to the wider community.
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López-Caniego, M., Herranz, D., González-Nuevo, J., et al. 2006, MNRAS, 370,
2047

Marriage, T. A., Baptiste Juin, J., Lin, Y.-T., et al. 2011, ApJ, 731, 100
Massardi, M., Bonaldi, A., Bonavera, L., et al. 2011, MNRAS, 415, 1597
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Miville-Deschênes, M.-A. & Lagache, G. 2005, ApJS, 157, 302
Murphy, T., Sadler, E. M., Ekers, R. D., et al. 2010, MNRAS, 402, 2403
Negrello, M., Clemens, M., Gonzalez-Nuevo, J., et al. 2013, MNRAS, 429, 1309
Negrello, M., Magliocchetti, M., Moscardini, L., et al. 2004, MNRAS, 352, 493
Planck Collaboration ES. 2013, The Explanatory Supplement to the Planck 2013

results (ESA)
Planck Collaboration I. 2013, In preparation
Planck Collaboration II. 2013, In preparation
Planck Collaboration Int. VII. 2013, A&A, 550, A133
Planck Collaboration IV. 2013, In preparation
Planck Collaboration VI. 2013, In preparation
Planck Collaboration VII. 2011, A&A, 536, A7
Planck Collaboration VII. 2013, In preparation
Planck Collaboration VIII. 2013, In preparation
Planck Collaboration XI. 2013, In preparation
Planck Collaboration XII. 2013, In preparation
Planck Collaboration XIII. 2011, A&A, 536, A13
Planck Collaboration XIII. 2013, In preparation
Planck Collaboration XIV. 2011, A&A, 536, A14
Planck Collaboration XIV. 2013, In preparation
Planck Collaboration XV. 2011, A&A, 536, A15
Planck Collaboration XV. 2013, In preparation
Planck Collaboration XVI. 2011, A&A, 536, A16
Toffolatti, L., Argueso Gomez, F., de Zotti, G., et al. 1998, MNRAS, 297, 117
Tucci, M., Toffolatti, L., de Zotti, G., & Martı́nez-González, E. 2011, A&A, 533,
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Appendix A: Photometry

This appendix describes in detail the photometry methods used
in the PCCS.

A.1. Aperture Photometry

The aperture photometry is evaluated by centring a circular aper-
ture on the position of the source. An annulus around this aper-
ture is used to evaluate the background. In the absence of noise,
the observed flux density of the source, S obs, may be written as:

S obs =

S ap − S an

 k2
0

k2
2 − k2

1

 (A.1)

where k0 is the radius of the aperture, k1 and k2 are the inner and
outer radii of the annulus, and, S ap and S an are the flux densities
of the source in the aperture and annulus. Both S ap and S ann may
be written in terms of the true flux density of the source, S true.
This gives the following relationship between the observed and
true flux densities of the source:

S obs =

Ωk0

Ω
−

(
Ωk2 −Ωk1

Ω

)  k2
0

k2
2 − k2

1

 S true (A.2)

where Ω is the solid angle of the beam, and Ωk0 , Ωk1 , and Ωk2

are the beam solid angles out to the radii of k0, k1 and k2. This
provides the correction factor to be applied to the observed flux
density, which accounts for both the flux density of the source
missing from the aperture and that removed through background
subtraction.

Assuming a circularly symmetric Gaussian beam and that k0,
k1 and k2 are given in units of the FWHM, equation A.2 may be
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written as:

S obs =

1 − (
1
2

)4k2
0

−

(1
2

)4k2
1

−

(
1
2

)4k2
2
 k2

0

k2
2 − k2

1

 S true (A.3)

We used a radius of 1 FWHM for the aperture, k0 = 1, and the
annulus is located immediately outside of the aperture and has a
width of 1 FWHM, k1 = 1 and k2 = 2.

The beams however are not exactly Gaussian so the effec-
tive FWHM is used to determine the radii of the aperture and
annulus, and the correction factor is evaluated using:

S obs =

(
4ΩFWHM1 −ΩFWHM2

3Ω

)
S true (A.4)

where ΩFWHM1 and ΩFWHM2 are the beam solid angles within
radii of 1 and 2 times the effective FWHM.

The noise level per pixel is estimated from the variance of the
pixels that lie in the annulus, hence the uncertainties in the esti-
mates of the background and the flux density within the aperture
may be evaluated, allowing the uncertainty on S obs to be cal-
culated. The diffuse sky emission is a source of uncertainty in
the photometry, thus it contributes a component to the “noise”
that is correlated between pixels. Given that the exact degree of
correlation is not known and is likely to vary with position on
the sky, a correction factor to account for the correlated noise
is evaluated by performing aperture photometry nearby, in re-
gions without detected sources. Its value is such that it scales the
residuals normalized by the uncertainties to a Gaussian of unit
variance.

A.2. PSF Photometry

The PSF photometry is obtained by fitting a model of the PSF
to the map at the position of the source. The PSF is obtained
from the effective beam (Planck Collaboration II 2013; Planck
Collaboration VI 2013). The model of the source is

m = AP + C, (A.5)

where P is the PSF at the position of the source, A is the am-
plitude of the source and C is a the (constant) background. The
best-fit values of the parameters β = (A,C) are found by min-
imising the χ2 between the model and the data, d,

χ2(β) = (d − m(β))TN−1(d − m(β)), (A.6)

where N is the covariance matrix of the noise. The noise is as-
sumed to be uncorrelated between pixels and proportional to the
inverse of the number of hits in each pixel. The overall normal-
ization of the noise is adjusted by setting χ2 = 1 at the best-fit
value of the parameters. This has the effect of inflating the uncer-
tainties to account for any mismatch between the modelled PSF
and the true shape of the source in the map. The uncertainties on
the parameters are computed from the curvature of the χ2. The
best-fit amplitude and its uncertainty are converted to units of
flux density using the area of the PSF.

A.3. Gaussian Fit Photometry

The Gaussian fit photometry is obtained by fitting a 2-
dimensional Gaussian to the map at the position of the source.
The model consists of a elliptical Gaussian centred at the posi-
tion of the source plus a linear background,

m(x) = A exp
[
−xTQ−1x/2

]
+ B · x + C, (A.7)

where A is the amplitude of the source, Q is the covariance ma-
trix of the elliptical Gaussian profile, and B and C are the back-
ground parameters. It is assumed that the source is at the origin
of the coordinates x. The components of Q can be expressed as
a function of the semi-axes a and b, and an orientation angle θ
as

Q−1 = RTC−1R, (A.8)

where R is the rotation matrix

R =

[
cos θ − sin θ
sin θ cos θ

]
, (A.9)

and

C−1 =

[
1/a2 0

0 1/b2

]
. (A.10)

There are seven parameters to fit

β = [A, B1, B2,C, a, b, θ]. (A.11)

The model is fitted to the data by minimising the χ2 (A.6) be-
tween a pixelized version of the model m and the data d. The un-
certainties on the parameters are given by the diagonal elements
of the covariance matrix of the fit. Assuming that the elliptical
Gaussian model is a good approximation to the real source pro-
file, the amplitude of the source and its uncertainty are converted
to units of flux density using the area of the Gaussian.
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Via Saragat 1, 44122 Ferrara, Italy

34 Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2,
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