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ABSTRACT
We study the mid-egress eclipse timing data gathered for the cataclysmic binary HU Aquarii
during the years 1993–2014. The (O−C) residuals were previously attributed to a single ∼7
Jupiter mass companion in ∼5 au orbit or to a stable two-planet system with an unconstrained
outermost orbit. We present 22 new observations gathered between 2011 June and 2014 July
with four instruments around the world. They reveal a systematic deviation of ∼60–120 s
from the older ephemeris. We re-analyse the whole set of the timing data available. Our results
provide an erratum to the previous HU Aqr planetary models, indicating that the hypothesis
for a third and fourth body in this system is uncertain. The dynamical stability criterion and a
particular geometry of orbits rule out coplanar two-planet configurations. A putative HU Aqr
planetary system may be more complex, e.g. highly non-coplanar. Indeed, we found examples
of three-planet configurations with the middle planet in a retrograde orbit, which are stable
for at least 1 Gyr, and consistent with the observations. The (O−C) may be also driven by
oscillations of the gravitational quadrupole moment of the secondary, as predicted by the
Lanza et al. modification of the Applegate mechanism. Further systematic, long-term moni-
toring of HU Aqr is required to interpret the (O−C) residuals.

Key words: techniques: photometric – stars: individual: HU Aqr – novae, cataclysmic
variables – planetary systems.

1 IN T RO D U C T I O N

The HU Aquarii binary system (HU Aqr hereafter) is one of the
brightest polars discovered so far (Schwope, Thomas & Beuermann
1993; Warner 1995). This binary belongs to the class of magnetic
cataclysmic variables (CVs). It consists of a strongly magnetized
white dwarf (WD, primary component) and a main-sequence red
dwarf (RD, M4V spectral type, secondary component). The RD fills
its Roche lobe (Warner 1995). The spin periods of both components
are synchronized with the short orbital period of ∼125 min by tidal
forces and extremely strong magnetic fields. Since the discovery
(Schwope et al. 1993), eclipses of HU Aqr have been monitored
frequently by several groups and many different facilities. Because
the mid-egress phase of the eclipses is very short, spanning a few

� E-mail: k.gozdziewski@umk.pl

seconds only, it is widely adopted in the literature as a standard
eclipse time-marker. Already a decade ago, Schwope et al. (2001)
reported deviations of the eclipse timing from the linear ephemeris
(O−C).

A few physical phenomena intrinsic to the binary system, such as
magnetic braking, mass transfer (Vogel et al. 2008; Schwarz et al.
2009), Applegate cycles (Applegate 1992), orbital precession of the
binary (Parsons et al. 2014), the rigid body precession of the WD
(Tovmassian, Zharikov & Neustroev 2007) and a migration of the
accretion spot on the WD surface, are commonly ruled out to be
the source of the (O−C) for HU Aqr (Vogel et al. 2008; Schwarz
et al. 2009; Qian et al. 2011), see also the most recent analysis
by Bours et al. (2014) and references therein. Instead, the (O−C)
variations have been interpreted as the light travel time effect (LTT
hereafter, or the Rømer effect) due to the presence of one or more
massive, Jovian companions (Schwarz et al. 2009; Qian et al. 2011;
Goździewski et al. 2012; Hinse et al. 2012b). A common problem
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of multiple-planet models is their short-time dynamic instability
spanning just 103–104 yr time-scales (Horner et al. 2011; Hinse et al.
2012b; Wittenmyer et al. 2012). This indicates that the common
understanding of mechanisms driving the (O−C) in HU Aqr may
be in fact incomplete. Indeed, Lanza et al. (1998), Lanza & Rodonò
(1999, 2002, 2004) and Lanza (2005, 2006) derived a mechanism
of the orbital period modulations in close binaries due to magnetic
activity cycles in one component, extending the idea of Applegate
(1992). This theory is build upon a hypothesis that the action of the
hydromagnetic dynamo and the Lorentz force in the convective zone
of the active star may cyclically change its quadrupole moment. This
is sufficient for inducing the orbital period variability with only a
fraction of the energy required by the simplified Applegate approach
(Lanza et al. 1998; Lanza 2006), see also a note in Brinkworth et al.
(2006).

In our previous paper (Goździewski et al. 2012), we demonstrated
that planetary models of the (O−C) may be affected by a non-proper,
kinematic formulation of the (O−C). Kinematic (Keplerian) models
are unsuitable for strongly interacting, massive planets, presumably
close to low-order mean motion resonances (MMRs). This is known
at least since the remarkable paper by Laughlin & Chambers (2001)
devoted to the radial velocity (RV) discoveries of extrasolar planets.
The LTT and RV models have in fact a very similar mathematical
formulation and concern similar mass ranges and orbital scales of
planetary systems. Following this idea, in Goździewski et al. (2012),
we introduced the self-consistent N-body model of the LTT effect.
This Newtonian formulation revealed a continuum of stable, two-
planet configurations of the HU Aqr system with an unconstrained
outermost orbit.

We found that the parabolic ephemeris permitting such stable
solutions must involve an excessively large secular decrease of the
binary period. Only for stable two-planet configurations involved
in low-order MMRs, like the 3:2 MMR, spanning narrow islands in
the orbital elements space, we found the orbital period decrease to
be reasonably small, though still two to three times larger than it is
usually explained by magnetic braking, mass transfer or Applegate
cycles, as argued by Vogel et al. (2008), Schwarz et al. (2009), Qian
et al. (2011) and Bours et al. (2014); see however the note above and
discussion in this paper. We suggested a possible solution of this
paradox by selecting a homogeneous subset of light curves in the
optical domain. We proposed that non-unique two-planet models in
the literature might appear due to mixing timing data in different
spectral domains (infrared, ultraviolet, X-rays). That proposition
was reinforced by observations derived from the fast photometer
OPTIMA. The OPTIMA photometry in the optical domain, span-
ning more than 10 years between 1999 and 2012, exhibits formal
sub-second accuracy and the collected data revealed an apparently
perfect, single period (O−C) variation of ∼40 s full amplitude.
Combined with other optical measurements, it might be attributed
to a single, massive Jovian planet of ∼7 mJup in an ∼5 au orbit,
simultaneously minimizing the number of free parameters in the
(O−C) model. However, shortly towards the end of the observing
season 2012, we noticed significant deviations from the parabolic
ephemeris in Goździewski et al. (2012). After observations during
2013 September it was already clear that the (O−C) exceed the LTT
semi-amplitude of all the previous planetary models by more than
a factor of 2, also ruling out the one-planet solution proposed in
Goździewski et al. (2012). The credit of detecting the large (O−C)
belongs chronologically to Schwope & Thinius (2014), who found
it independently. Unfortunately, our one-planet (single-period) so-
lution overemphasizes the subset of the optical data, and the timing
variability due to spectral windows and different geometry of the
eclipses appears as non-significant.

Table 1. HU Aqr observations with OPTIMA photopolarimeter in
2011 and 2012 with the 1.3-m telescope at the SKO (Crete, Greece)
in white light. Dates are given for the time of the mid-egress times.

Cycle Date Airmass Moon Phase
(per cent)

76348 2011-06-18 1.5–1.7 86
76394 2011-06-22 1.5–1.6 52
76395 2011-06-23 1.5–1.6 52
76406 2011-06-24 1.8–1.5 45
76464 2011-06-29 1.6–1.5 6
76532 2011-07-04 1.8–1.5 47
76555 2011-07-06 1.9–1.5 35
76556 2011-07-07 1.9–1.5 35
76567 2011-07-07 1.55–1.6 47
76648 2011-07-15 1.7–1.55 100
81001 2012-07-26 1.55–1.48 57
81013 2012-07-28 1.5–2.2 68
81162 2012-08-09 1.52–1.47 48
81186 2012-08-12 1.74–1.84 21
81231 2012-08-15 1.52–1.55 3

Therefore, we found it necessary to conduct a new analysis of
the up-to-date set of all observations and to revise all LTT models
derived so far (Schwarz et al. 2009; Qian et al. 2011; Goździewski
et al. 2012; Hinse et al. 2012b). Since the N-body two-planet models
in Goździewski et al. (2012) were constructed on the basis of all
available data, we continue the previous work, providing also an
erratum to this paper. We stress here, that we test the LTT hypothesis
in detail, as one of possible causes of the (O−C) variability, recalling
that the Lanza (2006) theory might also explain the (O−C), without
invoking the Rœmer effect at all.

During corrections of this manuscript in accord with the re-
viewer’s report, we found that Bours et al. (2014) reported new
22 precision measurements of the HU Aqr spanning essentially the
same time period, as data gathered in our paper. Our work extends
the results of Bours et al. (2014), since we focus on the detailed
analysis of the planetary models. We prove that the source of strong
dynamical instability in the HU Aqr planetary systems are similar
semimajor axes, placing putative companions of the binary in a
region of the 1:1 MMR and 3:2 MMR, combined with large and
unconstrained masses.

In this paper, we gathered the new measurements in the originally
submitted manuscript and the new observations published by Bours
et al. (2014). We verified that the results obtained without and with
their measurements, respectively, differ only up to quantitative sense
(i.e. the best-fitting parameters are slightly altered). With the aim
of publishing the most up-to-date results possible, we re-analysed
available timing data of the HU Aqr eclipses, which are collected
in the appendix.

This paper is structured as follows. Section 2 presents 22 new
observations of HU Aqr carried out between 2011 and 2014. This
set comprises of light curves gathered with the OPTIMA photopo-
larimeter hosted by the Skinakas Observatory (SKO, Crete, Greece),
as well as the most recent data taken with 2D detectors operated
in three different observatories, see Tables 1 and 2 for details. Sec-
tion 3 is devoted to the Keplerian and Newtonian (O−C) models. We
compare the results from the kinematic and self-consistent N-body
models of the LTT effect. Even more arguments are given against
the kinematic model of separate LTT orbits (Irwin 1952), which is
common in the recent literature (e.g. Qian et al. 2011; Beuermann
et al. 2012; Hinse et al. 2012b; Almeida, Jablonski & Rodrigues
2013; Hinse, Horner & Wittenmyer 2014; Lee et al. 2014). We
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Table 2. Parameters and conditions of HU Aqr observations with CCD
detectors. The observatory abbreviations are provided in the text, while
the filters abbreviations stand for ‘Cl’ – clear, ‘L’ – clear and ‘g′’ –
standard SDSS filter, respectively. ‘Expos.’ – stands for the exposure
time. Readout time and airmass are also given.

Cycle Date Obs./ Expos. Readout Airmass
Filter (s) (s)

85746 2013-09-11 NAO/Cl 10 ∼ 4 1.55–1.70
86032 2013-10-06 NAO/Cl 3 ∼ 0.5 1.54–1.47
86412 2013-11-08 NAO/Cl 3 ∼ 0.5 1.47–1.76
86976 2013-12-27 COG/L 15 ∼ 5 2.10–2.66
88383 2014-04-28 TNO/g′ 4.35 ∼ 0 1.80–1.60
89339 2014-07-20 NAO/Cl 3 ∼ 2.5 2.30–2.00
89340 2014-07-20 NAO/Cl 3 ∼ 2.5 1.50–1.45

Table 3. New HU Aqr BJD mid-egress times on the basis of light
curves collected with the OPTIMA photometer operated at the Ski-
nakas Observatory (OPT–SKO), with 2-m telescope at the National
Astronomical Observatory (PIVA–NAO), with PW24 at the Campus
Observatory Garching (PW24–COG), as well as with the ULTRA-
SPEC camera at 2.4-m Thai National Telescope (ULTRA-TNT).

Cycle L BJD Error (d − s) Instrument

76348 2455731.4841422 0.000 0054−0.47 OPT–SKO
76394 2455735.4778822 0.000 0025−0.22 OPT–SKO
76395 2455735.5646948 0.000 0023−0.20 OPT–SKO
76406 2455736.5197228 0.000 0019−0.16 OPT–SKO
76464 2455741.5552777 0.000 0093−0.80 OPT–SKO
76532 2455747.4590878 0.000 0029−0.25 OPT–SKO
76555 2455749.4559585 0.000 0017−0.15 OPT–SKO
76556 2455749.5427747 0.000 0016−0.14 OPT–SKO
76567 2455750.4978035 0.000 0019−0.16 OPT–SKO
76648 2455757.5302482 0.000 0071−0.61 OPT–SKO
81001 2456135.4591635 0.000 0071−0.61 OPT–SKO
81013 2456136.5010300 0.000 0058−0.50 OPT–SKO
81162 2456149.4372694 0.000 0059−0.51 OPT–SKO
81186 2456151.5209490 0.000 0020−0.17 OPT–SKO
81231 2456155.4278501 0.000 0034−0.29 OPT–SKO
85746 2456547.4214776 0.000 0073−0.63 PIVA-NAO
86032 2456572.2520793 0.000 0034−0.29 PIVA-NAO
86412 2456605.2437774 0.000 0027−0.24 PIVA-NAO
86976 2456654.2104280 0.000 0361−3.12 PW24-COG
88383 2456776.3665044 0.000 0017−0.14 ULTRA-TNT
89339 2456859.3666325 0.000 0064−0.56 PIVA-NAO
89340 2456859.4534517 0.000 0103−0.89 PIVA-NAO

discuss the dynamical stability of Newtonian solutions in Sec-
tion 3.7 and we conclude that at present, coplanar two-planet and
three-planet models with direct orbits are unlikely to explain the
recent (O−C) data of HU Aqr. We show that stable three-planet
systems with highly inclined orbits are possible. We discuss the
results in Section 4, estimating the (O−C) amplitude due to the
modified Applegate mechanism, and we propose independent as-
trometric and imaging observations to verify the LTT hypothesis.
The appendix contains a compilation of the data set used in this
paper.

2 N E W P H OTO M E T RY O F H U AQ R

2.1 Observations with OPTIMA in 2011 and 2012

There are 22 unpublished and new mid-egress times listed in Table 3.
Among them, 15 data points were obtained with the high time

resolution photo-polarimeter OPTIMA1 (Straubmeier, Kanbach &
Schrey 2001; Kanbach et al. 2008; Stefanescu 2011). OPTIMA was
initially designed for optical pulsar studies; however, it is not limited
to this subject only. Examples of results obtained with OPTIMA
include e.g. pulsars (Słowikowska et al. 2009), the first optical
magnetar (Stefanescu et al. 2008), intermediate polars (Nasiroglu
et al. 2012), polars (Słowikowska et al. 2013) and a black hole
candidate with optical variability (Kanbach et al. 2001).

Similar to previous years, we have conducted several observations
of HU Aqr during our OPTIMA observing campaigns at the SKO
in 2011 and 2012 (Goździewski et al. 2012; Słowikowska et al.
2013). Obtained light curves are shown in Fig. 1. Using fibre-fed
single photon counters, OPTIMA is capable of recording single
optical photons with an internal accuracy of 5 ns. The absolute
timing accuracy of the GPS signal is of the order of ∼20–40 ns.
For the purpose of this paper, we bin the OPTIMA counts for
1 s time resolution. This is sufficient to determine the mid-egress
moment very accurately, with formal sub-second time precision.
(We carefully checked that binning with interval of 1–3 s does
not change the results; hence, we choose the 1 s bins to obtain
denser sampling of the light curves). Technical information about
the observations is gathered in Table 1.

2.2 CCD-based observations in 2013 and 2014

In 2013 and 2014, we performed observations at the National Astro-
nomical Observatory in Rozhen (NAO, Bulgaria) and at the Campus
Observatory Garching (COG, Germany). We also observed HU Aqr
with the recently inaugurated 2.4-m Thai National Telescope (TNT)
at the Thai National Observatory (TNO, Thailand), equipped with
the ULTRASPEC instrument (Dhillon et al. 2014). Technical infor-
mation about the observations is gathered in Table 2.

Around the middle of the year 2014, we also derived a few
light curves with the PTST 24 inch telescope at the Observato-
rio Astronómico de Mallorca (OAM, Spain) as well as the Fast-
Cam instrument (Oscoz et al. 2008) at the Teide Observatory
(TO, Spain) where we used the 1.55-m Telescopio Carlos Sánchez
(TCS, Spain). The most recent observations were performed on
2014 July 23–26 at the TÜBİTAK National Observatory (TUG,
Turkey) with a 1-m robotic telescope. Unfortunately, these data
have relatively low photometric quality and are skipped in this
paper.

The main telescope of the NAO Rozhen is a 2-m Ritchey–
Chretien–Coudé reflector equipped with the Princeton Instruments
VersArray (PIVA): 1300 CCD camera that has a resolution of
580 × 550 pixels (pixel physical size of 20 µm, image scale 0.258
arcsec pixel−1 and the field of view FoV 2.5 arcmin × 2.36 arcmin).
The camera is cooled down to −110◦C. Light curves obtained with
the 2-m NAO telescope are shown in Fig. 2.

At the TNT 2.4-m telescope we used ULTRASPEC (Dhillon et al.
2014), an LN2-cooled frame-transfer EMCCD with a 1024 × 1024
active detector area which is designed for fast, low-noise operation.
Thanks to the use of subarray windows high frame rates can be
achieved, up to few 102 Hz (Richichi et al. 2014). Each frame is
time-stamped at mid-exposure with a dedicated GPS system. The
internal timing accuracy of the system has been tested to better than
1 ms. The observation was carried out in a standard SDSS g′ filter.
The resulting light curve is shown in Fig. 2.

1 http://www.mpe.mpg.de/OPTIMA
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Figure 1. The normalized light curves of HU Aqr obtained with OPTIMA in 2011 and 2012 (OPT-SKO). Time at the x-axis is relative the mid-egress moment,
in accord with Table 3.

2.3 Data analysis and timing accuracy

The CCD data were reduced with the IRAF package; for NAO ob-
servations the bias and flat-field corrections were applied, while
in the case of COG data only dark frames were subtracted. The
TNO observations were reduced with the ULTRACAM data re-
duction pipeline v9.122, a dedicated software for calibration and
aperture photometry analysis of the data gathered by ULTRACAM
and ULTRASPEC instruments. In all cases, special care of the tim-
ing accuracy was taken. In the case of OPTIMA timing is achieved
by using a GPS receiver. In the case of NAO, the system time is
synchronized automatically every 10 min with a GPS receiver and
information for corrections is saved in a log file. Additionally, it
was later controlled through NTP server http://time.nist.gov and
the difference was always smaller than 0.2 s. Time is updated every
15 min on COG at ntp2.mpe.mpg.de via SNTP (MPE). Data were
time stamped as JD UTC, and for the CCD data the mid-exposure
times were taken.

To derive the mid-egress moment, the sigmoid function repre-
senting the photometric flux:

I (t) = a1 + a2 − a1

1.0 − exp([t0 − t]/�t)
, (1)

2 http://deneb.astro.warwick.ac.uk/phsaap/software/ultracam/html/

(where a1, a2, �t are parameters describing the sigmoid shape),
was fitted to selected light curves around the mid-egress moment
t0, within some range of time t. This procedure is described in
section 4.2 of Goździewski et al. (2012). Then the derived UTC mid-
egress moments were converted to the BJD (Barycentric Dynamical
Time), using the ICRS sky coordinates of HU Aqr and the geodetic
coordinates of each given observatory, with the help of a numerical
procedure developed by Eastman, Siverd & Gaudi (2010). For all
mid-egress data, we adopted the formal 1σ error of the parameter t0.
The mid-egress times obtained with all mentioned telescopes and
instruments are listed in Table 3.

3 LT T M O D E L S O F T H E (O−C )

To revise the LTT models of Goździewski et al. (2012), we use the
collected mid-egress moments published in Schwope et al. (2001),
Schwarz et al. (2009), Goździewski et al. (2012), updated by our
new observations displayed in Table 3 and by the recent 22 data
points published by Bours et al. (2014). Summarizing the new 44
data points extend the set of all previous literature data used for
constraining N-body models in Goździewski et al. (2012). A com-
plete list of 215 mid-egress moments is compiled in the appendix
(Table A1). The zero cycle (L = 0) epoch for the third body models
is T0 = JD 245 3504.888 294 00, roughly in the middle of the obser-
vation window, and of the most accurate OPTIMA measurements.
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Figure 2. The light curves of HU Aqr obtained with various CCD instru-
ments: with the 2-m Rozhen telescope (PIVA-NAO) in 2013 during the
nights of September 11, October 6 and November 8 and two eclipses ob-
tained in 2014, July 20; from PW24-COG (2013 December 27) and from
ULTRASPEC/TNO (2014 April 28). Time at the x-axis is relative the mid-
egress moment, in accord with Table 3.

Note that Table A1 displays eclipse cycles counted from epoch JD
244 9102.920 0026, i.e. the epoch of first observation of HU Aqr
in Schwope et al. (1993). Though the mid-egress measurements
in Qian et al. (2011) are included in Table A1, they are not used
here. These data systematically outlay by a few seconds from more
accurate OPTIMA and MONET/N timings, spanning the same ob-
servational window (Goździewski et al. 2012). Note that Bours et al.
(2014) also did not include the Qian et al. (2011) observations for
the same reason.

With these data, we construct (O−C) diagrams (Fig. 3) for the
linear and parabolic ephemeris, respectively,

Tephem(L) = t0 + LPbin + βL2, (2)

where Tephem(L) is the time of predicted mid-egress at eclipse cycle
L, t0 is the epoch and β is the derivative of the orbital period Pbin,
in accord with Hilditch (2001).

Significant (O−C) mid-egress deviations from the linear
ephemeris (blue filled circles in Fig. 3, the left-hand panel) and from
the parabolic ephemeris (red filled circles in the right-hand panel)
have become apparent shortly after the end of observing season
2012 (see at the left border of shadowed rectangles). We continued
to monitor the target in 2013 September (NAO, Rozhen). Around
this epoch, the (O−C) for the parabolic ephemeris in Goździewski
et al. (2012) are already ∼60 s. Such a large magnitude was very
unexpected, and we tried to verify and confirm the NAO timing
data with other instruments. It was possible only in 2013 December
through observations with the PW24-COG instrument (see Table 2).
Shortly thereafter, Schwope & Thinius (2014) published six obser-
vations performed with a small 14 inch Celestron telescope, between
October 22 and 30, and new ephemerides of the HU Aqr eclipses.
(We do not use their observations in this paper due to low quality
lightcurves.) Continued monitoring of the HU Aqr during the new
observing season 2014 revealed progressing decay of (O−C). Re-
cent (O−C) reach 120 s for the linear ephemeris, and more than
60 s for the parabolic ephemeris (Fig. 3). The parabolic term about
of −5 × 10−13 day L−2 is larger than its previous estimates (e.g.
Schwarz et al. 2009; Qian et al. 2011; Goździewski et al. 2012).

3.1 Keplerian model of the LTT and optimization algorithms

In Goździewski et al. (2012), we revised a common kinematic (Kep-
lerian) formulation of the LTT effect (Irwin 1952) for multiple com-
panions of the binary. This is accomplished by expressing eclipse
ephemerides w.r.t. Jacobi coordinates with the origin at the centre
of mass (CM) of the binary. Because the binary period is shorter
than the orbital periods by a factor of ∼105, the binary is well
approximated by a point in the CM with the total mass of both
stars; the mass of the HU Aqr binary is 0.98 M� (Schwope et al.
2011). Osculating orbital elements and masses derived in this way
best match the true, N-body initial condition of the system with
mutually interacting planets.

This ephemeris model accounting for the presence of planetary
companions has the more general form of equation (2):

Tephem(L) = t0 + LPbin + βL2 +
∑

p

ζp(t(L)), (3)

where the ζ p(t) terms are for the (O−C) deviations induced by
gravitational perturbation of the CM by the third bodies (p = 1, 2,
. . . or, in accord with the common convention p = b, c, . . .):

ζp(t)=Kp

[
sin ωp(cos Ep(t) − ep)+cos ωp

√
1 − e2

p sin Ep(t)
]
,

and Kp, ep, ωp are the semi-amplitude of the LTT signal, eccen-
tricity and argument of the pericentre, respectively, for body p. Its
orbital period Pp and the pericentre passage Tp are introduced in-
directly through the eccentric anomaly Ep(t). Details are given in
Goździewski et al. (2012), see also further development of this idea
and discussion in Marsh et al. (2014).

The initial (O−C) diagrams in Fig. 3 are suggestive for a sig-
nificant parabolic term, which is also often quoted in the literature.
Therefore, we optimized the general form of equation (3) including
a parameter β that accounts for a secular change of the binary pe-
riod Pbin (i.e. the quadratic ephemeris). After extensive analysis, we
found that an alternative two-planet model with the linear ephemeris
is heavily unconstrained with respect to a few parameters. Its formal
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Figure 3. The (O−C) diagrams for mid-egress moments of HU Aqr collected in this paper (see the appendix, Table A1), with the ‘jitter’ error correction
of σ f = 0.9 s, see the text for details. Red and blue filled circles are for the linear (the left-hand panel) and for parabolic (the right-hand panel) ephemeris,
respectively. The yellow curve in the left-hand panel illustrates the parabolic term in equation (2). Labels are for the fitted parameters to equation (2) with
uncertainties at the last significant digit, which is marked with a digit in parenthesis. The shaded region is for the new data that show a large deviation from the
previous predictions in the literature.

best-fitting solution has similar orbital periods ∼22 yr, and permits
LTT semi-amplitudes K1,2 as large as 60 min. This implies the non-
physical companion masses of ∼1 M� (this will be shown at the
end of this section). Moreover, the linear ephemeris model provides
statistically worse solutions in terms of an rms, as compared to the
two-planet quadratic ephemeris, i.e. the fit model with only one
free parameter more. The quadratic term, usually interpreted as the
binary period derivative (Hilditch 2001), might be also caused by
a distant and massive companion with a very long orbital period.
Hence, we focus mainly on the parabolic ephemeris variant of the
two-companion hypothesis.

To optimize the ephemeris models in equation (3) in terms of the
reduced χ2

ν function, we apply a combination of the Genetic Algo-
rithms (GA, Charbonneau 1995) and the local and fast Levenberg–
Marquardt scheme, as described in Goździewski et al. (2012). This
hybrid algorithm (HA from hereafter) provides an efficient and ro-
bust exploration of multidimensional parameter space. Each run
of the HA starts from the GA step, which searches for reasonable
solutions over wide ranges of model parameters. In particular, the
hypercube of parameters explored by the GA has Kb, c ∈ [1, 1800] s,
Pb, c ∈ [2000, 36 000] d, eb, c ∈ [0, 0.99], and all angles permitted in
their full ranges. All GA-derived sets of solutions are then refined
with the Levenberg–Marquardt method. This procedure repeated
many times makes it possible to gather large statistics of solutions
which are consistent with the observations. (HA may be also used
to optimize the N-body models.)

3.2 Correction of the timing uncertainties

At the preliminary stage, we found that in spite of a wider observa-
tional window than in Goździewski et al. (2012), the HA converged
to non-unique solutions with marginally different χ2

ν . The best-
fitting solutions exhibit χ2

ν ∼ 9 on the raw data in Table A1. Such a
large value may indicate an incorrect fit model. However, recalling
the quasi-periodic character of the (O−C) shown in Fig. 3 and astro-
physical arguments, we assumed that the LTT model may be valid.
Therefore, the second possibility are underestimated uncertainties
of the measurements (Bevington & Robinson 2003). This makes it
difficult to derive proper uncertainties of the fit parameters. Hence,
assuming that the mid-egress errors are normally distributed, we
examined the uncertainty correction, similar to the so-called stellar
jitter, which is a well-known factor that must be accounted for in
the RV technique (e.g. Butler et al. 2003; Wright 2005). In sim-
ple settings, a one-parameter jitter uncertainty describes intrinsic

RV variability that is caused by the stellar chromosphere. Here, we
consider a similar correction to the mid-egress timing error, which
accounts, for instance, for the unmodelled geometry of eclipses, or
observational circumstances and instrumental errors, e.g. additional
elements of emission or absorption of light in the binary system. We
add such a priori unspecified term σ f in quadrature to uncertainties
of individual observations σ i, through σ 2

i → σ 2
i + σ 2

f , where i = 1,
. . . , Nobs, and Nobs is the total number of measurements. The σ f

term is then the free parameter of the fit model.
The introduction of the σ f factor is supported by arguments of

Schwope & Thinius (2014). They argue that formal uncertainties
of the mid-egress moments below ∼1 s are much smaller than the
finite physical size of the accretion spot. The X-ray emitting region
is ∼450 km across wide (Schwope et al. 2001), and is wider in the
optical domain since the egress phase lasts for ∼7–8 s. Moreover, the
accretion area migrates over the WD surface, hence the geometry of
eclipses is changing, and introducing a short-term component of the
(O−C), which is estimated for 1–2 s (Schwarz et al. 2009). Small
timing errors are possible for densely sampled light curves, and are
reported, for instance, by Schwope et al. (2001) for ROSAT (quoted
errors for cycles 2212–2225 are ∼0.13–0.24 s), by Goździewski
et al. (2012) for OPTIMA data (quoted errors are on the level
of ∼0.1–0.8 s), by Schwarz et al. (2009) for UTRACAM-VLT
(errors ∼0.5 s), and, very recently by Bours et al. (2014) for the
ULTRASPEC-TNT instrument (the quoted errors are as small as
0.02–0.06 s).

To determine σ f for selected solutions found with the HA, we
optimized the maximum likelihood function L:

logL = −1

2

∑
i

(O−C)2
i(

σ 2
i + σ 2

f

) −
∑

i

log
√

σ 2
i + σ 2

f − N log
√

2π,

(4)

where (O−C)i is the (O−C) deviation of the mid-egress at given
eclipse cycle Li (equation 3). This form of L is similar to that one
introduced by Baluev (2008) for the RV data.

Furthermore, to analyse the parameter correlations in detail, we
performed the Markov Chain Monte Carlo (MCMC) analysis of
selected best-fitting solutions. The posterior probability distribution
of model parameters θθθ given the data set D is defined through

p(θθθ |D) ∝ p(θθθ )p(D|θθθ),

where p(θθθ) is the prior, and the sampling data distribution p(D|θθθ ) ≡
logL(θθθ,D). We defined the parameter priors as uniform or uniform
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improper through placing only natural, physical and geometric lim-
its on the parameters, i.e. Kp > 0, Pp > 0, ep ∈ [0, 1), ωp ∈ [0, 2π ],
Tp > 0, Pbin > 0, β < 0, and σ f > 0, where p is the planet index,
p = b, c, d, and so on. These computationally simple priors are
justified here, since we analyse well localized solutions. Moreover,
we verified that the modified Jeffreys prior for parameter θ ≡ σ f,
as introduced by Gregory (2005),

p(θ ) = 1

(θ + θmin)

1

log[(θmin + θmax)/θmin]
,

(where θmin and θmax are scaling constants, fixed for σ f as equal to
0.01 s and 10 s, respectively), does not change the results. Similar
priors have been defined for the N-body models, with planetary
masses mp > 0, semimajor axes ap > 0, eccentricities ep ∈ [0, 1),
and all Keplerian angles ∈ [0, 2π ].

To perform the optimization of logL and the MCMC analysis,
we prepared PYTHON interfaces to model functions written originally
in FORTRAN and we used publicly available, excellent EMCEE code
of the affine-invariant ensemble sampler for MCMC proposed by
Goodman & Weare (2010), kindly provided by Foreman-Mackey
et al. (2013). See also the recent paper by Marsh et al. (2014) for a
consistent application of the MCMC optimization and this code to
the analysis of the (O−C) diagrams.

As shown below, all LTT models of HU Aqr studied in this paper
suffer from strong parameter correlations and are not unique (the
posteriors are multimodal). In such a case, an efficient application
of the MCMC to explore the whole parameter space is very difficult
(Foreman-Mackey et al. 2013; Marsh et al. 2014). In this sense, we
found that the HA and MCMC are complementary. The MCMC
method is a great tool to analyse properties of the best-fitting con-
figuration found with the HA, and is very useful to derive realistic
uncertainties of the parameters.

The results for the best-fitting Keplerian two-planet quadratic
ephemeris model (Table 4) are illustrated in the form of 1D and
2D projections of the posterior probability distributions. The best-
fitting models obtained in this way have slightly altered parameters,
as compared to their values derived through standard minimiza-
tion of χ2

ν . We obtained σ f ∼ 0.9–1.5 s for different LTT variants
(i.e. two-planet and three-planet configurations with the linear and
parabolic ephemeris) and the most recent data set. After applying
the correction term, we found that χ2

ν is ∼1, and the rms remains
unaltered, as expected. Furthermore, we ran the HA optimization
code on all mid-egress data in Table A1, with uncertainties added
in quadrature to a constant value of σ f = 0.9 s. Yet individual best-
fitting models were recomputed with σ f as a free parameter. The σ f

correction is most significant for ROSAT, OPTIMA and ULTRA-
SPEC measurements with formal sub-second accuracy. (Note, that
mid-egress timing data in Table A1 do not include this term in the
error column.)

It may be easily overlooked that the error correction has a signif-
icant influence on the parabolic ephemeris itself, see the right-hand
panel in Fig. 3, which shows the (O−C) diagram computed for
data errors corrected with σ f = 0.9 s. Without this correction, β �
−5.4 × 10−13 d L−2, and the residual (O−C) signal to be explained
by the LTT model is clearly modified, when compared to the raw
timing data.

3.3 Quadratic ephemeris, kinematic two-planet model

The resulting set of HA-derived solutions to the two-planet
quadratic ephemeris is illustrated as projections of their parameters
on to selected planes in Fig. 4. This set reveals a shallow minimum

Table 4. Keplerian parameters in accord with two-planet LTT fit
model with parabolic ephemeris to all available data in Table A1.
Synthetic curves of these solutions with mid-egress times are il-
lustrated in Fig. 5. Numbers in parentheses are for the uncertainty
at the last significant digit. Total mass of the binary is 0.98 M�
(Schwope et al. 2011). T0 = JD 245 3504.888 2940 is the adopted
osculating epoch coinciding with the L = 0 epoch, close the middle
of observational window.

Parameters Fit JQ Fit JL

Kb (s) 33.6 ± 1.9 2765.6 ± 331.5
Pb (d) 4707.4 ± 19.0 8029.4 ± 18.2
eb 0.270 ± 0.022 0.317 ± 0.015
ωb (deg) 44.640 ± 8.0 206.2 ± 4.1
Tb [T0+] 3845.4 ± 357.35 2917.4 ± 5524.6
ab (au) 5.48 –
mbsin i (mJup) 12.7 –
Kc (s) 87.7 ± 4.0 2860.7 ± 337.2
Pc (d) 7101.7 ± 25.6 8298.8 ± 19.8
ec 0.159 ± 0.014 0.336 ± 0.014
ωc (deg) 346.2 ± 5.2 25.03 ± 4.0
Tc [T0+] 3784.5 ± 1576.0 3714.1 ± 5766.5
ac (au) 7.14 –
mcsin i (mJup) 25.8 –
Pbin (d) 0.868 203 6931(4) 0.086 820 3618(6)
t0 [BJD 2,453,504.0+] 0.888 99(1) 0.887 42(15)
β [× 10−12 day· L−2] −1.30(4) –
σ f (s) 0.92(8) 1.48(9)
Nobs data 205 205
χ2

ν 0.96 1.04
rms (s) 1.72 2.02

of χ2
ν ∼ 1.0 and an rms∼1.8 s. However, the set of formal 1σ so-

lutions providing χ2
ν < 1.04 forms a narrow ‘valley’ in particular

planes. This indicates that the Keplerian model is unconstrained.
The 1σ -solutions might be divided into two groups. The first group
is characterized with Kb, c ∼ 30–60 s and bounded orbital periods
locating putative two-planet systems close to the 3: 2 MMR. The
best-fitting model JQ of this type is illustrated in the right-hand
panel of Fig. 5, see Table 4. The second group of models reveals an
apparently well-bounded inner orbital period Pb ∼ 4800 d, but the
outermost orbital period Pc is unconstrained, and it may be as large
as 36 000 d and longer. This is correlated to the LTT semi-amplitude
Kc up to 600 s. The inferred mass of the outermost companion may
be as large as 80 mJup and larger. Formal uncertainties of Fit JQ in
Table 4 are determined with the help of the MCMC analysis of the
optimization model including the σ f correction as a free parameter,
in accord with equation (4).

An inspection of Fig. 4 reveals strong correlations between the
parameters. This is particularly well visible in the (Pc, ec)- and (Pc,
β)-planes. A similar correlation is also found by Marsh et al. (2014)
for the two-planet parabolic ephemeris of NN Ser (let us note that the
residuals to the linear ephemeris of NN Ser are qualitatively similar
to the HU Aqr case, recently showing a phase of fast increase after
initially quasi-periodic oscillations). We investigated its nature with
an independent method, by performing the MCMC analysis of Fit
JQ (Fig. 6). Besides the (Pc, ec)- and (Pc, β)-correlations, there is
also a strong correlation between the orbital periods and the time
of pericentre passage for each orbit (not shown here). Moreover,
even in the smallest range, the β term has a large magnitude of
−1 × 10−12 d L−2, making the kinematic model questionable due
to the unknown origin of such a large period derivative.
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Figure 4. Best-fitting two-planet Jacobian solutions to the quadratic ephemeris projected on to selected parameter planes. Red circles are for models with
χ2

ν < 0.99 (marginally better than χ2
ν = 0.986 of the best-fitting model JQ see Table 4), blue open circles and grey filled circles are for χ2

ν < 1.04 and
χ2

ν < 1.08, respectively (roughly 1σ and 3σ -confidence intervals of the best-fitting solution).
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Figure 5. Best-fitting two-planet Jacobian solution (Fit JQ), left-hand panel. This model includes the quadratic term, see Table 4 for parameters of this fit.
Shaded curves are for the individual LTT components, respectively. Right-hand panel: N-body synthetic curve for the osculating initial condition derived
through the formal transformation of the Jacobian elements JQ to the N-body Cartesian osculating frame, centred at the CM of the binary.

3.4 Linear ephemeris, kinematic two-planet model

For reference, we also investigated the two-planet linear ephemeris
model, which is a very ‘attractive’ variant of the LTT hypothesis. A
stable system consistent with the linear ephemeris and observations

would essentially solve the problem of large orbital period derivative
β. Unfortunately, the linear model is even less constrained than the
quadratic ephemeris case. The best-fitting solution found after an
extensive HA search provides χ2

ν ∼ 1.04 and an rms ∼2.1 s. It
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Figure 6. One- and two-dimensional projections of the posterior probability distribution for the best-fitting kinematic model JQ with the parabolic ephemeris,
for a few selected parameters (Table 4).

reveals similar orbital periods Pb, c ∼ 8300 d. Simultaneously, the
semi-amplitudes Kb, c may be as large as ∼1 h. Such huge semi-
amplitudes imply companion masses in the range characteristic
for red dwarfs and massive stars. This is of course non-physical
outcome of the mathematical model. The best-fitting solution JL
is illustrated in Fig. 7, see Table 4 for its parameters. A particular
orientation of orbits with very similar periods, and anti-aligned
planets provides the same (O−C) in wide ranges of masses. The
same kind of degeneracy of kinematic two-planet model with the
linear ephemeris is present in the older data, and we discussed this
problem in Goździewski et al. (2012). Looking at the residuals
(bottom panel in Fig. 7), we notice systematic, though apparently
small deviation from zero at the end of the observing window. All
best-fitting models to the linear ephemeris exhibit measurements
similarly outlying from their synthetic solutions.

We found that the JL parameter correlations are much stronger
than for the quadratic ephemeris. This is illustrated by the projec-
tions of the MCMC posterior probability distributions for a few se-
lected model parameters in Fig. 8. A reliable determination of their
uncertainties is very difficult unless the model is not re-parametrized
in some particular way. The JL solution is quoted solely to show
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Figure 7. The synthetic curve for the best-fitting two-planet model JL with
the linear ephemeris (see Table 4 for its parameters). Shaded curves are for
individual signals of both companions, respectively.
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Figure 8. Projections of the MCMC posterior probabilities for selected parameters of the best-fitting solution JL (see Table 4 for elements of this fit). Note
extremely large semi-amplitudes of individual LTT signals, strong correlations between similar orbital periods Pb, c and between semi-amplitudes Kb, c.

extreme values of its non-physical parameters and its degenerate
character.

3.5 Conversion of Keplerian elements to the N-body frame

Following a common approach in the recent literature, we should
check whether the best-fitting planetary systems are dynamically
stable. Moreover, recalling close orbital periods in the best-fitting
solutions JQ and JL, kinematic models may be invalid at all, due
to significant mutual gravitational interactions between the planets.
This will be shown in the next section.

To accomplish numerical N-body integrations, we need to trans-
form the initial conditions from the Jacobian, kinematic frame, to
the N-body Cartesian coordinates at the osculating epoch T0

3. An
example of such a conversion for Fit JQ is illustrated in Fig. 5.
The right-hand panel shows systematic trends of the residuals to

3 Note, that in the literature, kinematic elements derived as ‘raw’ parameters
of the (O−C) model, equation (3), are usually interpreted incorrectly as
osculating, Keplerian, astrocentric elements w.r.t. the CM of the binary.

the N-body solution outside the T0 epoch. Indeed, a direct compari-
son of the synthetic signals derived from the kinematic and N-body
models differ by ±10 s (Fig. 9). This might be still considered as a
subtle difference, however, the N-body osculating initial condition
derived from Fit JQ provides χ2

ν > 7.29, though χ2
ν ∼ 1 for the

original, source kinematic model. This means that the transformed
kinematic initial conditions are poorly consistent with observations.
A similar discrepancy of Newtonian and kinematic two-planet mod-
els has been shown in Marsh et al. (2014) for the (O−C) of NN
Serpentis. These differences for HU Aqr are 10 times larger, likely
due to larger planetary masses and smaller separation of orbits. In
some parts of this window they may be compared to the signal itself.
Recalling a possibility of massive companions, this shows that the
LTT signal of HU Aqr cannot be properly modelled even in terms
of the Jacobian, refined kinematic formulation.

Fortunately, the gathered huge sets of ∼106 Jacobian fits with
χ2

ν < 9 may be still used as relatively accurate approximations of
the proper osculating elements. These solutions were further refined
in terms of the exact N-body model. Such an approach is helpful for
CPU-efficient and quasi-global exploration of the parameter space
of the Newtonian models.
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Figure 9. Differences of the LTT signals derived from Jacobian, kinematic
solutions JQ (Table 4) and from respective, osculating N-body model, inte-
grated numerically with the inferred initial condition at the osculating epoch
of the L = 0 cycle. The L = 0 cycle is centred roughly at the middle of the
observational window.

3.6 The N-body two-planet model with parabolic term

The refined set of N-body models with parabolic ephemeris is illus-
trated in Fig. 10. Green filled circles in this figure encode solutions
χ2

ν < 1.06 (roughly 3σ of the best-fitting model NQ1 displayed in

Table 5). This distribution of best-fitting solutions is bimodal, with
two types of planetary configurations. The first type is close to the
best-fitting model NQ1 providing χ2

ν ∼ 0.96 and characterized by
very similar semimajor axes of both companions, ab, c ∼ 5.7 au,
and with strongly correlated and unconstrained masses, drawn up
to 120mJup. Similar semimajor axes indicate the 1:1 MMR. The
second, shallow minimum of χ2

ν ∼ 1.02 is for solutions around the
3:2 MMR (Fit NQ2), since the semimajor axes are close to ∼5.5
and ∼6.5 au, respectively. These best-fitting models are illustrated
in Fig. 11.

The MCMC analysis reveals that though a clear correlation per-
sists between the outermost period and the period derivative term,
this correlation is significantly weaker than in the kinematic model.
This parameter has a large magnitude of β � −4 × 10−12 d L−2 and
β � −7 × 10−12 d L−2, respectively. The MCMC derived posterior
probability distribution histograms (not shown here) confirmed in
independent way that both solutions, derived and illustrated through
the HA projections in Fig. 10, are relatively well bounded in the
parameter space, except for a very strong correlation of masses in
Fit NQ1, similar to correlation of semi-amplitudes in Fit JL.

We also computed the Newtonian models with the linear
ephemeris. In this case, only one minimum of χ2

ν is apparent in
the region of the 1:1 MMR, with both semimajor axes around

Figure 10. Best-fitting two-planet Newtonian solutions with the quadratic term projected on to planes of orbital elements at the osculating epoch T0. Red
filled circles are for the best-fitting models with χ2

ν < 0.96, blue filled circles are for χ2
ν < 1.02, green filled circles are for χ2

ν < 1.06 (roughly 3σ of Fit NQ1)
and grey filled circles are for χ2

ν < 1.17, respectively. Solutions NQ1 and NQ2 displayed in Table 5 are labelled.
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Table 5. Newtonian parameters of two best-fitting two-planet LTT
models with parabolic ephemeris, NQ1 and NQ2, respectively. Syn-
thetic curves with mid-egress times are illustrated in Fig. 11. Digits in
parentheses are for the uncertainty at the last significant place. Total
mass of the binary is 0.98 M� (Schwope et al. 2011).

Parameters Fit NQ1 Fit NQ2

mb [mJup] 96.2 ± 9.4 16.8 ± 1.0
ab (au) 5.68 ± 0.06 5.48 ± 0.06
eb 0.147 ± 0.015 0.230 ± 0.028
ωb (deg) 250.8 ± 7.3 92.3 ± 7.5
Mb (deg) 170.3 ± 7.7 115.6 ± 4.1
mc [mJup] 98.3 ± 9.5 20.8 ± 1.3
ac (au) 5.67 ± 0.06 6.38 ± 1.56
ec 0.123 ± 0.011 0.083 ± 0.027
ωc (deg) 103.0 ± 8.1 72.6 ± 9.2
Mc (deg) 140.8 ± 9.0 286.5 ± 5.63
Pbin (d) 0.086 820 3933(9) 0.086 820 3796(1)
�t0 [BJD 2,453,504.0+] 0.888 38(3) 0.888 84(1)
β [× 10−13 d L−2] −3.7(2) −7.9(5)
σ f (s) 0.94(7) 0.94(8)
Nobs data points 205 205
Npar free parameters 14 14
χ2

ν 0.96 0.96
rms (s) 1.73 1.78

∼7 au. However, all orbital parameters are spread over wide ranges.
There is also a strong correlation between unconstrained companion
masses, which reach the non-physical stellar mass range, similar to
the kinematic two-planet linear ephemeris. This correlation has the
same geometric source as in the Keplerian model, since it appears
due to particularly anti-aligned orbits with similar semimajor axes.
Therefore, the best-fitting, coplanar two-planet models with the lin-
ear ephemeris must be also considered as highly unconstrained and
non-physical.

3.7 Stability analysis of two-planet solutions

At a stage of the N-body correction of Keplerian models, we verified
the dynamical stability of all solutions with final χ2

ν < 4.0, by the
direct numerical integration of the N-body equations of motion with
the Bulirsch–Stoer algorithm. To quantify the dynamical stability,
we determined the crossing time of orbits (the Event Time, TE from

hereafter) for a time span of ∼106 outermost orbital periods. If TE

is shorter than this limiting integration time, then this indicates a
close encounter between components or the ejection of a planet
from the system. We did not find any stable solutions in the set of
∼106 models with the parabolic ephemeris, close to the best-fitting
solutions NQ1 and NQ2 (as illustrated in Fig 10), except for just a
few hierarchical configurations with χ2

ν > 1.6. Such stable solutions
are characterized by the outermost semimajor axis ac ∼ 15 au and a
large mass of the outer companion ∼69 mJup, i.e. in a region of the
parameter space separated by a few σ from the best-fitting models.

This still does not prove that stable configurations with reason-
ably small χ2

ν do not exist in some regions of the parameter space,
consistent with observations. For instance, the angular elements
of such solutions might be systematically displaced from a stable
MMR region (e.g. Goździewski & Maciejewski 2001; Goździewski
& Migaszewski 2014). Therefore, to understand the observed in-
stability, we carried out extensive Monte Carlo experiments. For
the two-planet quadratic ephemeris solutions, we selected grids of
400 × 400 and 400 × 800 points in the semimajor axes plane (ab,
ac), spanning ab ∈ [5, 7] au, ac ∈ [5, 8] au for fit NQ1, and ab ∈ [4.5,
6.5] au, ac ∈ [4.5, 9.5] au for fit NQ2, respectively. Next, at each
point of the given grid, we computed the Mean Exponential Growth
factor of Nearby Orbits (MEGNO hereafter) for up to 1 Myr (i.e. up
to a few 104 outermost orbital periods). MEGNO (Goździewski &
Maciejewski 2001; Cincotta, Giordano & Simó 2003) is a numeri-
cal algorithm making it possible to estimate efficiently the Maximal
Lyapunov Exponent and to determine quasi-regular and chaotic so-
lutions of the N-body equations of motion. In the examined ranges
of semimajor axes, two-planet systems may be stable only in the
regime of MMRs, and chaotic solutions imply short-time geomet-
ric instability (hence short TE) (e.g. Goździewski & Migaszewski
2014).

The MEGNO indicator was computed 2880 times at each point
of a particular (ab, ac)-grid: at each point of this grid, the argument
of pericentre � c ∈ [0◦, 360◦] was gradually increased from 0◦ to
360◦ by �� c = 0.◦125, and for a such a particular value of � c,
we selected random eccentricities within [0, eb, c + 0.2) around a
given best-fitting solution, and random mean anomaly Mc ∈ [0◦,
360◦]. In this way, we obtain an extensive and exhaustive mapping
of the multidimensional parameter space. The tested sets of initial
conditions for the best-fitting models NQ1 and NQ2 contain of
∼4 × 108 and ∼9 × 108 elements, respectively. (Note that planetary
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Figure 11. Best-fitting Newtonian two-planet quadratic ephemeris models: Fit NQ1, left-hand panel, and Fit NQ2, right-hand panel, respectively. See Table 5
for parameters of these solutions.
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Figure 12. Illustration of stability analysis of the two-planet Newtonian models NQ1 (left-hand panel), and NQ2 (right-hand panel) in the (ab, c, �λ)-planes,
where �λ is the initial difference between the mean longitudes of the planets. Dark grey points are for stable initial conditions, light grey and coloured points
are for models within χ2

ν < 1.21 (a few σ -confidence levels of the best-fitting model NQ1). White colour is for unstable configurations. See the text for details.

masses were kept fixed in both tests at their nominal values of NQ1
and NQ2 solutions in Table 5.) Then we computed MEGNO for each
initial conditions and gathered all regular (quasi-periodic) models.
Such massive computations would be hardly possible to conduct
without a help of our Message Passing Interface (MPI) code μFARM

run at the cane computer cluster (Poznań Supercomputing Centre
PCSS, Poland).

The results are illustrated in two panels of Fig. 12, in the (ab, c,
λb − λc)-planes around initial orbital elements corresponding to
Fits NQ1 and NQ2, respectively. For reference, we overplotted the
statistics of the best-fitting solutions (Fig. 10). White regions in this
figure mean that any tested combination of the orbital elements, even
not necessarily consistent with the observed (O−C), has a positive
Lyapunov Exponent (therefore is unstable). The best-fitting models
are found around initial �λb, c = λb − λc ∼ 180◦, hence in antiphase
with possible stable models (dark, grey filled circles in Fig. 12).
Both these regions are completely separated up to χ2

ν ∼ 1.17, more
than a few σ levels. This suggests that stable configurations are
unlikely within the parameter ranges permitted by the observations,
recalling the huge volume of initial conditions examined in both
experiments. Similar Monte Carlo tests were repeated a few times
more for different nominal best-fitting models obtained on the basis
or earlier observations, and also their results are negative. We note
that stable configurations with proper �λ are possible for systems
with the outermost semimajor axis ac greater than ∼15 au. However,
such models are poorly consistent with the observations, implying
χ2

ν > 1.56, as described above.
A similar stability test for the two-planet N-body linear

ephemeris, has only a formal sense, due to the large and un-
constrained masses of the planets. We selected a solution with
semimajor axes ∼7 au and relatively small masses of the plan-
ets, ∼120 mJup, still unlikely in the real HU Aqr system. Similar
to the previous experiment, stable models exhibit �λ in antiphase
with the gathered statistics of the best-fitting models. Stable sys-
tems with both semimajor axes ∼7 au (close to the 1:1 MMR) are
possible only when both planets are roughly aligned in their or-
bits with anti-aligned apsidal lines, similar to the parabolic case
(see the left-hand panel in Fig. 12) and may persist even in ex-
treme mass ranges. Therefore, such apparently unlikely 1:1 MMR
configurations should not bea priori considered as dynamically
unstable.

3.8 Three-planet models with the linear ephemeris

The best-fitting two-planet solutions NQ1 and NQ2 exhibit exces-
sively large period derivative β ∼ −10−12d L−2, which may be
interpreted as the LTT delay induced by a third companion with
a very long orbital period. This period may be estimated by the
curvature of the parabolic trend of the (O−C), compared to the ob-
servational window ∼20 yr. Since only a small fraction of the orbit
is apparent, the orbital period would be multiplied by a factor of
2–3 or larger.

If to allow for a hypothesis of such a highly hierarchical three-
planet configuration, we may focus first on the innermost two-
planet close-in systems. In Goździewski et al. (2012), we found
stable two-planet configurations in a region of moderate eccen-
tricities. However, similar to the HW Vir case (Beuermann et al.
2012), the outermost orbit of these models is not well determined.
The present data of HU Aqr, extending the observational window
by only ∼10 per cent, seem to narrow possible solutions to a much
more compact set overlapping with the previously derived 3:2 MMR
configurations. In the current models, both semimajor axes are si-
multaneously shifted by ∼1 au to a secondary region of unstable
models in the (ab, ac)-plane in Goździewski et al. (2012, see their
fig. A3, left-bottom panel). Moreover, the best-fitting N-body con-
figuration corresponds to the 1:1 MMR with very similar orbital
periods and masses, reaching the non-physical region of two red
dwarf companions. This solution is robust, and is preserved with
the up-to date mid-egress timing. The change of the orbital param-
eters is caused by the fast decay of the (O−C) over past 2 years. We
did not find any stable, coplanar two-planet strictly consistent with
observations; however, such systems might be stable if the planets
were placed initially in antiphase with their actual, predicted ‘ob-
servational’ positions. It may be understood as a strong, dynamical
indication of plainly inadequate or incomplete LTT model of the
low-period component of the (O−C).

Therefore, we performed the N-body search in terms of the three-
planet linear ephemeris model, at first with planets in coplanar and
direct orbits. As the result, we obtain that basically any combination
of masses up to the red dwarf mass limit, semimajor axes in the
range up to 20 au, and eccentricities ∈ [0, 1) are possible, still
providing χ2

ν ∼ 1. A typical semimajor axis of the outermost planet
in these three-planet models is larger than 16 au. We also did not
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Figure 13. Synthetic curve of dynamically stable three-planet model with
the linear ephemeris (NL3). The osculating, astrocentric orbital elements
at the epoch of T0 =BJD 245 3504.888 2940, expressed by tuples (m –
mass [mJup], a – semimajor axis [au], e – eccentricity, i – inclination [deg],
� – node [deg], ω – argument of pericentre [deg], M – mean anomaly
[deg]) for each planet are: (4.758 mJup, 3.602 au, 0.0218, 90◦, 0◦, 173.◦01,
133.◦69), (20.20 mJup, 6.557 au, 0.1365, 90◦, 180◦, 10.◦77, 245.◦50), (80.00
mJup, 12.887 au, 0.0158, 90◦, 0◦, 311.◦94, 83.◦47), for planets b, c and d,
respectively. The initial epoch of the ephemeris t0 = BJD 2453504888294,
Pbin = 0.086 820 2747 d. Total mass of the binary is 0.98 M�. This model
provides χ2

ν � 1.14 and an rms � 1.76 s with 205 data points and 17
free parameters (inclinations and nodes are fixed). The error correction is
σ f = 0.9 s. Formal uncertainties of the NL3 solution are difficult to estimate,
since this model is displaced from the minimum of χ2

ν ∼ 0.9 and an rms
∼1.71 s and is localized in dynamically complex zone.

find any stable models with coplanar and direct orbits providing
χ2

ν < 3.3, through setting different constraints for these models
(moderate eccentricities, circular orbit of the outermost component,
hierarchical configuration of the planets).

The assumption of coplanar systems with all direct orbits still
does not preclude stable spatial two- or three-planet configurations,
with high mutual inclinations, up to the limit of coplanar counter-
rotating companions. In the most extreme case, such systems tend
to be much more stable than configurations with the direct orbits
(Eberle & Cuntz 2010; Morais & Giuppone 2012; Goździewski et al.
2013). Strongly resonant systems may be also possible, with three
planets involved in deep, low-order and very narrow MMRs, like
in the HR 8799 planetary system exhibiting Laplace 4:2:1 MMRs
(Goździewski & Migaszewski 2014) confined to small stable islands
in the semimajor axes–eccentricity space.

As an illustration, we show here an example of a stable three-
planet model with the linear ephemeris (NL3, see Fig. 13), which
was found through the HA, permitting that one of the planets is in
retrograde orbit with respect to two remaining planets in prograde
orbits. This solution, providing χ2

ν ∼ 1.14 and very small rms 1.76 s
(similar to the best-fitting two-planet solutions), belongs to a family
of stable, small-eccentricity orbits with semimajor axes of ∼3.6,
∼6.6 and ∼13 au, respectively. Moreover, the outermost planet’s
mass is heavily unconstrained and may be as large as 80 mJup.

In spite that the innermost and the middle planets’ are also mas-
sive (∼5 mJup and ∼16 mJup, respectively), and the system is dy-
namically packed, it remains stable for at least 1 Gyr. The evolution
of bounded semimajor axes for such an interval of time is shown
in Fig. 14. To show the dynamical neighbourhood of this particu-
lar model, we computed the MEGNO dynamical map, varying the
semimajor axis and eccentricity of the middle planet, and keep-

Figure 14. Evolution of semimajor axes in the long-term stable model
NL3 with the middle planet in a retrograde orbit. Osculating elements of
this model are displayed in caption to Fig. 14.

Figure 15. A dynamical map in terms of the MEGNO indicator for the long-
term stable model NL3 in the (semimajor axis ac, eccentricity ec)-plane of
the middle planet. The nominal model is marked with the star symbol. The
dynamical stability is colour-coded: dark blue (black) with MEGNO ∼2
is for quasi-periodic configurations, yellow (grey) is for chaotic, strongly
unstable models. The resolution of the map is 1024 × 768 initial conditions.
Each configuration was integrated for 1.6 Myr (50 000 outermost periods).
See the text for details.

ing other parameter fixed at its nominal values. The dynamical map
(Fig. 15) reveals that this model (and the whole family of solutions of
this class) is localized in a relatively extended stable zone, spanned
by a dense net of two-body and three-body MMRs. As a ‘side-
effect’ of this experiment, we detected the so-called Arnold web,
seen as weak, vertical ‘X’-like structures in Fig. 15. The Arnold web
emerges due to overlapping unstable MMRs and their branches (e.g.
Goździewski et al. 2013) in strongly perturbed planetary systems.

This NL3 solution is peculiar, because the middle orbit is retro-
grade (the orbital spin vector is antiparallel to the orbital spins of
two remaining companions). We constrained the NL3 model by re-
stricting the absolute inclinations to one plane and fixing nodal lines,
since this minimizes the number of free-parameters required to de-
scribe the spatial model. Releasing these constraints, we also found
stable solutions with mutual inclinations reaching 180◦, which re-
sult in reasonably small rms of ∼1.8 s. Such apparently extreme
solutions should not be necessarily excluded as non-physical and
non-realistic. The dynamical environment of the putative planetary
system has strongly changed during the common envelope phase
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(Portegies Zwart 2013). This might force a dynamical instability of
the system and close encounters which resulted in highly inclined
orbits.

4 D I S C U S S I O N A N D C O N C L U S I O N S

The HU Aqr binary belongs to the class of evolved binaries after the
post-common envelope phase or compact binaries, which presum-
ably host single or multiple planetary companions (e.g. Beuermann
et al. 2010, 2011; Qian et al. 2010; Yang et al. 2010; Potter et al.
2011; Lee et al. 2012; Almeida, Jablonski & Rodrigues 2013; Lee,
Hinse & Park 2013; Marsh et al. 2014). These papers claim (ex-
plicitly, or implicitly) that the observed (O−C) variability can be
explained by the Rømer effect. Circumbinary planets exist, indeed,
since they have been recently detected and confirmed independently
through photometry of the KEPLER telescope (e.g. Orosz et al. 2012;
Welsh et al. 2012, 2014).

However, the LTT hypothesis suffers from ambiquities regard-
ing optimization methods, dynamical models of putative planetary
systems, as well as phenomena intrinsic to the binaries.

Recent studies of multiple-planet systems detected by the (O−C)
technique revealed that their orbits are close to low-order MMRs
and strongly unstable, for time-scales as short as thousands of years
(e.g. Horner et al. 2012, 2013; Lee, Hinse & Park 2013; Wittenmyer,
Horner & Marshall 2013; Hinse, Horner & Wittenmyer 2014; Lee
et al. 2014). The only well-documented exception seems to be the
NN Ser system (Beuermann et al. 2010; Marsh et al. 2014) which
presumably hosts a long-term stable system of two Jovian planets
involved in the 2:1 MMR or the 5:2 MMR. Also the two-planet HW
Vir system (Lee et al. 2009; Beuermann et al. 2012) may be resonant
and stable, though the semimajor axis of the outer planet, and its
mass are yet not well determined. HU Aqr is perhaps one of the most
enigmatic members of this class of putative planetary systems. Its
analysis provides interesting clues, spanning observational aspects,
through the proper modelling of the (O−C), the dynamical evolution
and stability and possible scenarios of their formation (e.g. Portegies
Zwart 2013).

In this work, we tested the LTT effect, which may be present
in the HU Aqr, on strict dynamical grounds. In the very recent
paper, Bours et al. (2014) conclude that the (O−C) derived two-
planet and three-planet systems around this binary are unstable due
to large eccentricities. We found that such coplanar configurations
are unstable due to semimajor axes in similar ranges and large and
unconstrained planetary masses reaching the non-physical range of
red dwarfs, and particular relative phasing on the planets in their
orbits. Actually, the best-fitting models exhibit small and moder-
ate eccentricities. They are degenerated due to strong correlations
between their physical and geometrical parameters.

The HU Aqr data provide a clear example that the Keplerian
and N-body formulations of the LTT effect for multiple planetary
systems may lead to qualitatively different views on its parameter
space. Observational windows of the binaries are narrow relative to
the putative orbital periods, and the inferred masses of hypothetical
planets are large, up to the brown dwarf and the red dwarf limits,
like in the SZ Her system (Hinse et al. 2012a). In such settings,
the conversion of model parameters between both reference frames
may introduce significant deviations between synthetic signals de-
rived from the Keplerian, and osculating Newtonian elements. This
may qualitatively modify the statistics of best-fitting configurations
constrained by the available data. Moreover, the LTT models of HU
Aqr suffer from strong correlations between different parameters,
which makes the problem of reliable optimization of these mod-

els even more complex. Similar correlations are reported by Marsh
et al. (2014) for the parabolic ephemeris of NN Ser.

Our results indicate that the LTT hypothesis for the eclipse timing
of HU Aqr is uncertain. Recalling the geometric source of the
instability of coplanar two-planet configurations, more elaborate
dynamical models to describe the observed (O−C) are required, like
the three-planet model with large relative inclinations, as described
above.

Moreover, the results in Lanza et al. (1998) and Lanza (2006)
still support the quadrupole moment variations as the source of the
(O−C), though the Applegate effect is usually dismissed in the
literature. To show this, we extrapolated formulae in Wang et al.
(2010, their equation 7) for the luminosity variation �L/L of the
secondary component M4V, as derived for the modified Applegate
mechanism in Lanza et al. (1998) and Lanza (2006) and references
therein. We found that �L/L ∼8 × 10−6 in the relative units, adopt-
ing the radius R = 0.22 R�, mass M = 0.18 M�, orbital separation
a = 0.0032 au, and the effective temperature T = 3400 K of the
secondary. Indeed, in accord with Lanza et al. (1998), the luminos-
ity variations associated with the Applegate mechanism should be
effectively smoothed out, given the much longer thermal time-scale
of the stellar convection zone and they may be hardly observable.
We also estimated the quadrupole period variation �Q needed to
drive the modulation of the orbital period (Lanza & Rodonò 1999)

�Pbin

Pbin
= −9

�Q

Ma2
≡ 4πK

Pmod
,

where we adopted the semi-amplitudes Kb, c and the orbital periods
Pb, c in Fit JQ (Table 4) as estimates for the semi-amplitude K
of the orbital period modulations, and for the modulation period
Pmod, respectively. We obtain �Pbin/Pbin ∼ 10−6, �Q ∼ 1 × 1047

g cm2 and ∼2 × 1047 g cm2, respectively, which are in the range
characteristic for other short-period CVs systems (Lanza & Rodonò
1999). The order of magnitude of these variations of ∼5 × 1047

g cm2 is typical for a possible Applegate-like mechanism (Lanza,
private communication). Therefore, this mechanism leaves the LTT
effect only as a reasonable possibility among other explanations of
the (O−C).

We certainly need an independent observational approach to shed
more light on this problem. Such a technique might be the astromet-
ric monitoring of the binary. HU Aqr is a relatively distant object
at ∼200 pc. However, provided the accuracy of ∼30 µs which is
accessible by the ongoing GAIA mission, a detection of its putative
companions may be possible after 5 yr observations. A simulation
of the astrometric signal of a single-planet system with a 7 Jovian
mass planet in a 5 au orbit (Fig. 16) reveals its amplitude of ∼0.3
mas. If the putative outermost, massive companion is very distant
from the binary, as it might be suggested by the β term, then al-
ready well-developed direct imaging technique might confirm its
presence directly. Combined with a proper dynamical model, such
a detection might at least put some constraint on its mass and orbital
distance (Goździewski & Migaszewski 2014).

The results of our paper preclude the hypothesis of any coplanar
two-planet system around HU Aqr. A three-planet system with one
planet in a retrograde orbit or with high mutual inclinations might
be possible, but its reliable detection on the basis of the (O−C) data
is unlikely too, recalling the short time-span of the observations. It
is also possible that the intrinsic binary’s activity and the quadrupole
modulations of the secondary due to magnetic cycles may be fully
responsible for the observed (O−C) signal or for its significant
fraction, similar to stellar spots which ‘pollute’ the RV and transit
data (e.g. Montalto et al. 2014). We postpone the analysis of such
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Figure 16. A simulation of the astrometric reflex motion of the mass centre
(red ellipse) of the HU Aqr (CM) due to the presence of a circumbinary 7
Jupiter mass planet at 8 years orbit, coplanar with the binary orbital plane
(i = 87◦). The reflex semimajor axis a of the CM is ∼0.17 mas. Accurate
observations with the mean uncertainty at 30–50 µas level (open circles with
crossed error bars), and spanning about of 5 yr may be sufficient to detect
the third-body object.

more complex models of the (O−C) to future papers. The target
should be systematically monitored on a long-term time baseline to
reveal the true nature of the observed eclipse timing variability.
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A P P E N D I X A : MI D - E G R E S S TI M E S O F H U
AQ R

Table A1 in this appendix collects mid-egress moments published
in the literature, as well as our new data, which were used for the
analysis of (O−C) in this paper.

The first column L is the cycle number with respect to the epoch
BJD 2449102.9200026 (the BJD of the first observation in Schwope
et al. 1993). The L = 0 cycle here is shifted to epoch T0 = BJD
2453504.8882940 with constant offset of 50 702 cycles. The sec-
ond column is the moment of the mid-egress in MJD. The third

Table A1. Mid-egress moments available in the literature.

Cycle L MJD Error (d) Instrument Ref.

0 49102.4200026 0.000 0029 ROSAT 1
1319 49216.9361120 0.000 0115 MCCP 2
1320 49217.0229220 0.000 0115 MCCP 2
1321 49217.1097490 0.000 0115 MCCP 2
1322 49217.1966010 0.000 0231 ESO1m 2
1333 49218.1516100 0.000 0231 ESO1m 2
1334 49218.2384390 0.000 0231 ESO1m 2
1367 49221.1035010 0.000 0231 ESO1m 2
1368 49221.1903190 0.000 0231 ESO1m 2
1369 49221.2771480 0.000 0231 ESO1m 2
2212 49294.4667944 0.000 0013 ROSAT 1
2213 49294.5536119 0.000 0031 ROSAT 1
2216 49294.8140780 0.000 0024 ROSAT 1
2222 49295.3349966 0.000 0024 ROSAT 1
2225 49295.5954591 0.000 0012 ROSAT 1
2226 49295.6822824 0.000 0018 ROSAT 1
4241 49470.6254248 0.000 0109 ROSAT 1
4409 49485.2112814 0.000 0276 ROSAT 1
6328 49651.8196284 0.000 0267 ROSAT 1
6341 49652.9483283 0.000 0066 ROSAT 1
6390 49657.2025335 0.000 0067 ROSAT 1
6391 49657.2893776 0.000 0200 ROSAT 1
6403 49658.3311948 0.000 0115 ROSAT 1
6576 49673.3511292 0.000 0134 ROSAT 1
6579 49673.6115921 0.000 0067 ROSAT 1
10707 50032.0062777 0.000 0246 ROSAT 1
12607 50196.9650434 0.000 0138 ROSAT 1
13064 50236.6420028 0.000 0104 EUVE 1
13620 50284.9141040 0.000 1157 AIP 2
13621 50285.0008780 0.000 1157 AIP 2
13632 50285.9558900 0.000 1157 AIP 2
13707 50292.4675175 0.000 0184 EUVE 1
14087 50325.4592540 0.000 0277 HST 2
14088 50325.5460740 0.000 0277 HST 2
14115 50327.8903240 0.000 1157 AIP 2
14116 50327.9771620 0.000 1157 AIP 2
14138 50329.8870410 0.000 1157 AIP 2
14139 50329.9738660 0.000 1157 AIP 2
14236 50338.3954800 0.000 0277 HST 2
14250 50339.6109856 0.000 0110 EUVE 1
14740 50382.1529766 0.000 0134 ROSAT 1
14746 50382.6739289 0.000 0187 EUVE 1
16906 50570.2059884 0.000 0067 ROSAT 1
17010 50579.2353441 0.000 0306 ROSAT 1
17030 50580.9717399 0.000 0095 EUVE 1
17994 50664.6666491 0.000 0203 EUVE 1
21014 50926.8642796 0.000 0134 ROSAT 1
21023 50927.6456491 0.000 0067 ROSAT 1
21026 50927.9061160 0.000 0067 ROSAT 1
22478 51053.9693474 0.000 0087 EUVE 1
22788 51080.8837110 0.000 1157 AIP 2
25892 51350.3743220 0.000 0115 OPT-ESO22 2
25926 51353.3262190 0.000 0115 OPT-ESO22 2
25938 51354.3680780 0.000 0115 OPT-ESO22 2
27394 51480.7786360 0.000 0231 AIP 2
29946 51702.3443352 0.000 0037 OPT-ESO22 4
29955 51703.1257050 0.000 0810 AIP 2
29955 51703.1257050 0.000 0925 CA123 2
29957 51703.2993545 0.000 0038 OPT-ESO22 4
29958 51703.3861705 0.000 0034 OPT-ESO22 4
29966 51704.0807040 0.000 0810 AIP 2
29966 51704.0807040 0.000 0925 CA123 2
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Table A1 – continued

cycle L MJD Error (d) Instrument Ref.

30265 51730.0400324 0.000 0041 OPT-SKO 4
30276 51730.9950648 0.000 0017 OPT-SKO 4
30277 51731.0818971 0.000 0019 OPT-SKO 4
30287 51731.9500901 0.000 0023 OPT-SKO 4
30299 51732.9919357 0.000 0033 OPT-SKO 4
30300 51733.0787554 0.000 0054 OPT-SKO 4
30310 51733.9469740 0.000 0031 OPT-SKO 4
30311 51734.0337856 0.000 0018 OPT-SKO 4
31312 51820.9410210 0.000 0115 STJ 2
31313 51821.0278410 0.000 0115 STJ 2
35043 52144.8679250 0.000 0463 AIP 2
35376 52173.7790965 0.000 0018 OPT-SKO 4
35377 52173.8659101 0.000 0022 OPT-SKO 4
35469 52181.8533851 0.000 0030 OPT-SKO 4
38098 52410.1041626 0.000 0084 OPT-SKO 4
38105 52410.7118710 0.000 0578 OM-UVM2 2
38107 52410.8855720 0.000 0231 XMM-MOS1 2
38107 52410.8855780 0.000 0231 XMM-MOS2 2
38108 52410.9723920 0.000 0231 XMM-PN 2
38109 52411.0591932 0.000 0034 OPT-SKO 4
38133 52413.1428510 0.000 0115 ULTRA-WHT 2
38145 52414.1847400 0.000 0115 ULTRA-WHT 2
39731 52551.8818440 0.000 0116 OPT-SKO 2
39742 52552.8368410 0.000 0116 OPT-SKO 2
42352 52779.4380340 0.000 0578 OM-UVM2 2
42395 52783.1712990 0.000 0115 ULTRA-WHT 2
42441 52787.1650399 0.000 0015 OPT-SAO 4
42463 52789.0750934 0.000 0014 OPT-SAO 4
42464 52789.1619272 0.000 0024 OPT-SAO 4
42486 52791.0719483 0.000 0015 OPT-SAO 4
42487 52791.1587715 0.000 0024 OPT-SAO 4
44534 52968.8800760 0.000 0033 OPT-NOT 4
44557 52970.8769377 0.000 0085 OPT-NOT 4
47253 53204.9447079 0.000 0027 OPT-SKO 4
47254 53205.0315288 0.000 0037 OPT-SKO 4
47300 53209.0252729 0.000 0038 OPT-SKO 4
47335 53212.0640023 0.000 0038 OPT-SKO 4
48265 53292.8069570 0.000 0102 OPT-SKO 4
48288 53294.8038228 0.000 0035 OPT-SKO 4
48299 53295.7588336 0.000 0066 OPT-SKO 4
48334 53298.7975567 0.000 0015 OPT-SKO 4
50702 53504.3882940 0.000 0056 ULTRA-VLT 2
50713 53505.3433170 0.000 0056 ULTRA-VLT 2
50714 53505.4301390 0.000 0056 ULTRA-VLT 2
50724 53506.2983420 0.000 0056 ULTRA-VLT 2
50725 53506.3851620 0.000 0056 ULTRA-VLT 2
50737 53507.4270080 0.000 0056 ULTRA-VLT 2
51020 53531.9971595 0.000 0100 OPT-SKO 4
51032 53533.0390170 0.000 0052 OPT-SKO 4
51066 53535.9909030 0.000 0064 OPT-SKO 4
51067 53536.0777278 0.000 0033 OPT-SKO 4
55466 53918.0007189 0.000 0046 OPT-SKO 4
55535 53923.9913426 0.000 0102 OPT-SKO 4
55546 53924.9463562 0.000 0075 OPT-SKO 4
55627 53931.9788164 0.000 0061 OPT-SKO 4
55661 53934.9307071 0.000 0064 OPT-SKO 4
55719 53939.9662754 0.000 0162 OPT-SKO 4
59524 54270.3179890 0.000 0157 ULTRA-VLT 2
59525 54270.4048120 0.000 0157 ULTRA-VLT 2
59558 54273.2698840 0.000 0157 ULTRA-VLT 2
59559 54273.3567040 0.000 0157 ULTRA-VLT 2

Table A1 – continued

Cycle L MJD Error (d) Instrument Ref.

60085 54319.0242409 0.000 0073 OPT-SKO 4
60096 54319.9792541 0.000 0037 OPT-SKO 4
60097 54320.0660769 0.000 0055 OPT-SKO 4
64657 54715.9671496 0.000 0053 OPT-SKO 4
64885 54735.7622085 0.000 0038 OPT-SKO 4
64886 54735.8490181 0.000 0016 OPT-SKO 4
65265 54768.7539926 0.000 0023 OPT-SKO 4
67604 54971.8267890 0.000 0390 YANO-24 3
67791 54988.0622710 0.000 0029 OPT-SKO 4
67917 54999.0016391 0.000 0017 OPT-SKO 4
67918 54999.0884526 0.000 0054 OPT-SKO 4
68009 55006.9891162 0.000 0017 OPT-SKO 4
68914 55085.5614770 0.000 0390 YANO-24 3
68926 55086.6033490 0.000 0390 YANO-24 3
69328 55121.5051450 0.000 0390 YANO-24 3
69490 55135.5700570 0.000 0390 YANO-24 3
69800 55162.4843420 0.000 0390 YANO-24 3
69812 55163.5261930 0.000 0390 YANO-24 3
69823 55164.4811950 0.000 0390 YANO-24 3
69915 55172.4686720 0.000 0390 YANO-24 3
71785 55334.8227620 0.000 0390 YANO-24 3
72009 55354.2706040 0.000 0004 NTT+UCAM 5
72010 55354.3574451 0.000 0005 NTT+UCAM 5
72099 55362.0844371 0.000 0032 OPT-SKO 4
72110 55363.0394546 0.000 0019 OPT-SKO 4
72121 55363.9944885 0.000 0029 OPT-SKO 4
72133 55365.0363444 0.000 0015 OPT-SKO 4
72225 55373.0238044 0.000 0048 OPT-SKO 4
72237 55374.0656456 0.000 0040 OPT-SKO 4
72248 55375.0206715 0.000 0040 OPT-SKO 4
72305 55379.9694292 0.000 0030 OPT-SKO 4
72351 55383.9631748 0.000 0024 OPT-SKO 4
72352 55384.0499944 0.000 0022 OPT-SKO 4
72421 55390.0406108 0.000 0013 OPT-SKO 4
73409 55475.8190971 0.000 0578 PIRATE 4
73559 55488.8421698 0.000 0578 PIRATE 4
73560 55488.9290151 0.000 1156 PIRATE 4
75467 55654.4954277 0.000 0040 MONET/N 4
75812 55684.4484608 0.000 0023 MONET/N 4
76053 55705.3721585 0.000 0009 NTT+UCAM 5
76348 55730.9841422 0.000 0054 OPT-SKO 6
76394 55734.9778822 0.000 0025 OPT-SKO 6
76395 55735.0646948 0.000 0023 OPT-SKO 6
76406 55736.0197228 0.000 0019 OPT-SKO 6
76464 55741.0552777 0.000 0093 OPT-SKO 6
76532 55746.9590878 0.000 0029 OPT-SKO 6
76555 55748.9559585 0.000 0017 OPT-SKO 6
76556 55749.0427747 0.000 0016 OPT-SKO 6
76567 55749.9978035 0.000 0019 OPT-SKO 6
76648 55757.0302482 0.000 0071 OPT-SKO 6
76721 55763.3681410 0.000 0035 MONET/N 4
76868 55776.1307426 0.000 0020 LT+RISE 5
77031 55790.2824571 0.000 0039 MONET/N 4
77066 55793.3211556 0.000 0077 MONET/N 4
77067 55793.4079841 0.000 0055 MONET/N 4
77078 55794.3630179 0.000 0065 MONET/N 4
77247 55809.0356564 0.000 0025 LT+RISE 5
77546 55834.9949490 0.000 0179 WFC 4
77557 55835.9499905 0.000 0295 WFC 4
77789 55856.0922852 0.000 0038 MONET/N 4
77802 55857.2209399 0.000 0090 MONET/N 4
77823 55859.0441786 0.000 0066 MONET/N 4
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Table A1 – continued

cycle L MJD Error (d) Instrument Ref.

77902 55865.9029864 0.000 0022 LT+RISE 5
78100 55883.0934038 0.000 0022 MONET/N 4
80324 56076.1818394 0.000 0022 LT+RISE 5
80485 56090.1598976 0.000 0019 LT+RISE 5
81001 56134.9591635 0.000 0071 OPT-SKO 6
81013 56136.0010300 0.000 0058 OPT-SKO 6
81162 56148.9372694 0.000 0059 OPT-SKO 6
81186 56151.0209490 0.000 0020 OPT-SKO 6
81231 56154.9278501 0.000 0034 OPT-SKO 6
81486 56177.5670248 0.000 0008 WHT+UCAM 5
81531 56180.9739470 0.000 0022 LT+RISE 5
81532 56181.0607721 0.000 0006 WHT+UCAM 5
81910 56213.8788462 0.000 0002 WHT+UCAM 5
82566 56270.8329602 0.000 0053 LT+RISE 5
84275 56419.2088830 0.000 0011 LT+RISE 5
84678 56454.1974374 0.000 0017 LT+RISE 5
85746 56546.9214776 0.000 0073 PIVA-NAO 6
85965 56565.9351702 0.000 0010 LT+RISE 5
86032 56571.7520793 0.000 0034 PIVA-NAO 6
86391 56602.9205819 0.000 0016 LT+RISE 5
86412 56604.7437774 0.000 0027 PIVA-NAO 6
86433 56606.5670216 0.000 0045 TNT+USPEC 5
86467 56609.5189097 0.000 0021 TNT+USPEC 5
86976 56653.7104280 0.000 0361 PW24-COG 6
88383 56775.8665044 0.000 0017 ULTRA-TNT 6
88973 56827.0904134 0.000 0016 INT+WFC 5
88985 56828.5322517 0.000 0037 INT+WFC 5
89066 56835.1647131 0.000 0024 LT+RISE 5
89339 56858.8666325 0.000 0064 PIVA-NAO 6
89340 56858.9534517 0.000 0103 PIVA-NAO 6

column is the quoted mid-egress error in the relevant source pub-
lication, derived on the basis of observations with ‘Instrument’
(fourth column). Instruments are code-named in accord with a par-
ticular source publication: ‘1’ is for Schwope et al. (2001), ‘2’ is
for Schwarz et al. (2009), ‘3’ is for Qian et al. (2011), ‘4’ is for
Goździewski et al. (2012), ‘5’ is for Bours et al. (2014) and ‘6’ is
for this work. The mid-egress measurements in Qian et al. (2011)
are included in Table A1; however, these data were not used for
constraining our models, since they differ by ∼10 s from accurate
OPTIMA and MONET/N points, spanning the same observational
window Goździewski et al. (2012). There are 215 data mid-egress
JD measurements in total, but only Nobs = 205 points were used in
this paper.
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