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1.2. Astrometric Data

This section provides a framework for the interpretation of the astrometric data given
in the Hipparcos and Tycho Catalogues. It explains the coordinate system, time scales
and units used in the Catalogues, and in particular their relations to the standard
astronomical reference systems. The precise definition of the astrometric parameters
requires the introduction of several auxiliary concepts which are covered in the last two
subsections.

Additional information relevant for the practical use of the astrometric data is found
in Section 1.5. This includes the transformations to ecliptic and galactic coordinates
and to arbitrary epochs; the calculation of space coordinates and velocities; and the
propagation of errors in these transformations.

1.2.1. The Astrometric Parameters Determined by Hipparcos

The basic astrometric data in the Hipparcos and Tycho Catalogues include directions
(positions), specified by celestial coordinates, their rate of change (proper motions), and
trigonometric parallaxes. This is the first observational catalogue to contain parallaxes
in addition to positions and proper motions for all stars in the observing programme.

The positions and proper motions are given within the International Celestial Reference
System (ICRS), which is consistent with the conventional equatorial system for the
mean equinox and equator of J2000, previously realised by the FK5 Catalogue (see
Section 1.2.2). The timing of events is consistently based on the terrestrial time-scale,
TT (see Section 1.2.3).

The standard astrometric model for a single star (Section 1.2.8) assumes uniform rec-
tilinear space motion relative to the solar system barycentre. At some reference epoch,
T0, the motion is then described by the following six parameters:

• barycentric coordinate direction; this is specified as right ascension, α, and decli-
nation, δ ;

• annual parallax, π, from which the coordinate distance is (sin π)−1 astronomical
units;

• rate of change of the barycentric coordinate direction expressed as proper motion
components µα� = µα cos δ and µδ , in angular measure per unit time;

• radial (i.e. line of sight) velocity, VR, in linear measure per unit time.

The radial velocity is normally obtained from spectroscopic observations. The remaining
parameters, referred to as the ‘five astrometric parameters’, are determined from analysis
of the Hipparcos observations and are given for almost all stars in the catalogue.
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The six parameters listed above refer, in principle, to the reference epoch T0. The
propagation of the parameters and their covariances to arbitrary epochs is treated in
Section 1.5. Normally only the changes in α and δ , due to the proper motion, are
appreciable. In rigorous treatment the time-dependence of all six parameters must
however be explicitly considered (see Section 1.5.5). In such cases their values at the
catalogue epoch T0 are denoted α0, δ0, π0, µα�0, µδ0 and VR0.

The system of units used for these data is as follows (see Sections 1.2.3 and 1.2.5):

• for α and δ when expressed as full angles: degrees (deg);

• for differential coordinates such as ∆α� = ∆α cos δ and ∆δ : milliarcsec (mas);

• for π: milliarcsec (mas);

• for µα� and µδ : milliarcsec per Julian year (mas yr−1);

• for VR: km s−1.

Stellar distances are measured in parsec. To sufficient approximation, the distance in
parsec is given by 1000/π, where π is expressed in mas.

The common reference epoch used throughout the catalogue is T0 = J1991.25(TT) (see
Section 1.2.6).

The standard astrometric model, using the five astrometric parameters, was found to
be adequate for the majority of the stars, including the components of most resolved
double and multiple stars. For several thousand apparently single stars, however, the
standard model did not give an acceptable fit to the observations. These are probably
binary stars, in which the centre of light describes a curved path on the sky due to
the orbital motions of the components around their common centre of mass. For such
‘astrometric binaries’ additional parameters had to be introduced to describe the motion
in accordance with the observations. In most cases a good empirical fit was obtained
by including one or two additional terms in the Taylor expansion of the variation of
the barycentric coordinate direction with time. In a few hundred cases even this was
not sufficient, and Keplerian elements (sometimes partially based on existing ground-
based data) were introduced to describe the orbital motion of the photocentre. These
extended solutions are also given in the Double and Multiple Systems Annex.

When comparing the Hipparcos and Tycho Catalogues with previous astrometric catalogues, the following

points are noted:

• positions and proper motions are given for the catalogue epoch, T0 = J1991.25(TT), which is close

to the central epoch of observations (the distinction between the epoch which specifies the equinox

and equator of a coordinate system, typically B1950 or J2000, and the epoch at which the star passed

through the given position, should be noted);

• the International Celestial Reference System (ICRS), as represented by the Hipparcos and Tycho

Catalogues, replaces the FK5 system as the practical definition of celestial coordinates in the optical

region. The construction of the ICRS (see Section 1.2.2) ensures that no discontinuity larger than the

uncertainty of the FK5 system occurs in the transition from FK5 (mean equinox and equator J2000)

to ICRS. Thus, from the viewpoint of optical astrometry, the Hipparcos and Tycho Catalogues can

be regarded as an extension and improvement of the J2000(FK5) system, retaining approximately the

global orientation of that system but without its regional errors. However, it should be noted that

the Hipparcos and Tycho Catalogues have not been tied to the FK5 system, but to the ICRS through

the extragalactic radio frame (see Volume 3, Chapter 18). The relation between the ICRS(Hipparcos)

reference frame and the J2000(FK5) system is further discussed in Section 1.5.7;
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• providing positions within the ICRS means that they are consistent with present knowledge of the

(extragalactic) radio reference system. Providing proper motions within the ICRS means that they are

consistent with the best present realisations of a quasi-inertial reference system (i.e. non-rotating with

respect to distant galaxies);

• since parallax is explicitly derived in the data reduction, the directions represented by the right ascension

and declination at epoch T0 are strictly barycentric. In previous astrometric catalogues, the unknown

displacement due to parallax for each observation perturbed the final catalogue positions;

• at the accuracy achieved by Hipparcos, general relativity effects cannot be ignored. In the relativistic

framework, the observed directions are proper directions referred to the Lorentzian frame moving with

the observer. In order to relate the observed directions at different epochs and of different objects to a

simple geometrical model of the stars and their motions, the ‘local’ effects of the moving observer (stellar

aberration) and space curvature (gravitational light deflection by the Sun) are removed by transforming

the proper directions to coordinate directions corresponding to the coordinate differences between the

object and observer, expressed in the (solar system) barycentric coordinate system;

• stellar aberration has been computed from the barycentric motion of the satellite, using the full relativistic

formula and combining the geocentric satellite velocities accurate to about 0.2 m s−1, determined by the

ground stations, with the appropriate ephemeris (see Section 1.2.4) for the barycentric motion of the

Earth. Gravitational light deflection has been computed in the heliocentric metric, assuming spherical

symmetry. The treatment of aberration is consistent with the IAU (1984) recommendation that the total

barycentric velocity of the Earth should be used; prior to that date the elliptic component of velocity,

which changes very slowly with time, was conventionally ignored;

• the proper motions are instantaneous rates of change of the barycentric coordinates at the epoch T0.

For stars with large parallax, large proper motion, and large radial velocity, the apparent acceleration of

coordinates due to perspective effects may be significant. These can be calculated on the assumption of

uniform space motion relative to the barycentre, and have been accounted for, in the case of the few most

significantly affected stars, in reducing the individual observations to T0, as described in Section 1.2.8;

• still assuming uniform barycentric motion, star positions and proper motions, within the fixed quasi-

inertial reference frame of ICRS, can be calculated for arbitrary epochs, using the catalogue data and,

where appropriate, taking into account the perspective accelerations. Procedures for this, and the

corresponding propagation of uncertainties, are discussed in Section 1.5;

• while ground-based proper motions are typically obtained by comparing positional catalogues having

an epoch difference of 20 to 50 years, the Hipparcos proper motions are determined using a temporal

baseline of only a few years. The ground-based values thus give the mean motion over several decades,

while the Hipparcos proper motions are, by comparison, quasi-instantaneous. This is of no consequence

as long as the motions are uniform, which is a valid assumption at least for the single stars. However,

many apparently single stars are in reality double, and the actual motions of the individual components

or of the photocentre of the double star may be significantly non-uniform. For such objects there

may be a discrepancy between the space and ground-based proper motions which is not attributable

to random errors or differences of the reference frames. More extreme cases of non-uniform motion

become noticeable already during the few years of the Hipparcos mission and require the extended

solutions given in the Double and Multiple Systems Annex.
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1.2.2. The Hipparcos Reference Frame

The positions given in the Hipparcos and Tycho Catalogues effectively define a grid of
celestial coordinates (α, δ) for the epoch J1991.25. By means of the proper motions
also given in the catalogues, this grid can be extended forward and backward in time to
arbitrary epochs (albeit with an uncertainty that increases with the epoch difference).
The positions and proper motions thus define a specific coordinate system on the sky,
accessible in optical wavelengths at any epoch: the Hipparcos Reference Frame.

The Hipparcos and Tycho Catalogues have been constructed in such a way that the
Hipparcos Reference Frame coincides, to within limits set by observational uncertain-
ties, with the International Celestial Reference System (ICRS). The ICRS is practically
defined by the adopted positions of several hundred extragalactic radio sources.

Construction of the ICRS: In 1995, the IAU Working Group on Reference Frames identified the celestial

reference system of the International Earth Rotation Service (IERS) as the next official IAU celestial reference

system under the name of ‘International Celestial Reference System’ (ICRS). The definition of the ICRS

complies with the 1991 IAU recommendations on reference frames. The axes of the system are realised

with an accuracy of ±30 µas. Their directions are consistent with those of the FK5 system (mean equinox

and equator J2000) within the uncertainty of the latter (±50–80 mas; E.F. Arias, P. Charlot, M. Feissel &

J.-F. Lestrade, 1995, Astronomy & Astrophysics, 303, 604), and their tie to the best current realisation of the

FK5 dynamical reference system is within ±3 mas (W.M. Folkner, P. Charlot, M.H. Finger, J.G. Williams,

O.J. Sovers, X X Newhall & E.M. Standish, Jr., 1994, Astronomy & Astrophysics, 287, 279).

In October 1995, the IAU Working Group on Reference Frames released the ICRS coordinates of some 250

extragalactic objects (out of some 600 that are monitored), constituting the International Celestial Reference

Frame (ICRF). The accuracy of the coordinates of more than half of the sources is better than ±0.47 mas.

In the future, the IERS will continue to monitor the sources, issuing appropriate updates, while keeping the

reference coordinates unchanged.

In order to align the Hipparcos Reference Frame with the ICRS it is necessary to
find objects whose positions and/or proper motions can be referred to both systems.
Unfortunately, none of the extragalactic objects defining the ICRS is bright enough
at optical wavelengths for direct observation by Hipparcos. Therefore, the linking of
the two systems was made a posteriori through auxiliary ground-based observations, as
described in detail in Volume 3, Chapter 18. The estimated uncertainty of the link
corresponds to a standard error of 0.6 mas in the alignment of the axes at the catalogue
epoch J1991.25, and 0.25 mas yr−1 in the rate of rotation of one system with respect to
the other. Since the ICRS is defined by means of extragalactic sources, the Hipparcos
and Tycho proper motions are quasi-inertial to within ±0.25 mas yr−1.

Thus, within the uncertainties quoted above, the Hipparcos and Tycho Catalogues
represent the extension to optical wavelengths of the extragalactic reference system as
realised by the International Celestial Reference Frame (ICRF). In the catalogues, the
positions and proper motions are thus specified as referring to the ICRS.

Traditionally, astrometric catalogues have been referred to the mean equinox and equator of some standard

epoch such as B1950 or J2000. This practice was in principle based on the dynamical definition of a reference

system in terms of two fundamental planes, the mean equatorial plane (given by the Earth’s rotation after

elimination of nutation terms) and the ecliptic plane. The intersection of the two planes defines the mean

equinox as the origin of right ascension. The two planes are not inertially fixed, but move slowly due to

luni-solar and planetary precession. In order to define a fixed (inertial) reference system it was necessary

to specify a certain date E at which to ‘freeze’ the fundamental planes, and hence set the reference axes
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for the celestial coordinates. The latter are then said to refer to the mean equinox and equator of E (say,

J2000). Transformation of coordinates between reference systems of different equinoxes E1, E2 is equivalent

to correcting the positions for the accumulated precession between the two dates E1 and E2. This process is

dependent on a dynamical theory of precession and the observationally determined constants of the theory.

With the adoption of the ICRS and a purely conventional definition of celestial coordinates (through a list of

adopted source positions), the mean equatorial plane and the ecliptic have lost their fundamental significance

for the celestial reference system. Consequently it is not meaningful to speak of the ‘equator’ or ‘equinox’ of

the ICRS, except possibly as (inappropriate) designations of the origins of α and δ in that system. In particular,

no specific date is associated with the origin of α in ICRS, although it is close to the mean dynamical equinox

of J2000.

The positions and proper motions in the Hipparcos Catalogue define a reference frame
which is likely to be accurate, on a global scale, to about 0.1 mas (at J1991.25) and
0.1 mas yr−1. Due to the large number of stars, the potential level of definition might
even be a factor 10 better than these numbers, although current techniques do not allow
any assessment on that accuracy level. Intrinsically, therefore, the Hipparcos Reference
Frame is considerably better defined than its link to the extragalactic ICRS. Once fixed
through the Hipparcos Catalogue, the Hipparcos Reference Frame will have its own
independent existence as one particular realisation of the ICRS; for many years, it is
likely to remain the best realisation of the ICRS in the optical domain.

1.2.3. Time Scales

The time scale used in the Hipparcos and Tycho Catalogues (for both the astrometric
and the photometric data) is Terrestrial Time (TT). The practical realisation of this
scale is through International Atomic Time (TAI). The basic unit of TAI and TT is
the SI second, and the offset between them is conventionally 32.184 s (with deviations,
attributable to the physical defects of atomic time standards, probably between the limits
±10 µs), so that the realisation of TT in terms of TAI is taken to be:

TT(TAI) = TAI + 32.184 s [1.2.1]

For details of the choice and definition of time scales, see the Explanatory Supplement to
the Astronomical Almanac, 1992, University Science Books, P.K. Seidelmann (ed.).

Relativistic effects and relativistic timescales: The rate of an atomic clock depends on the gravitational

potential and its motion with respect to other clocks; thus the timescale entering the equations of motion

(and its relationship with TAI) depends on the coordinate system to which the equations refer. Since 1984

The Astronomical Almanac referred to two such timescales: Terrestrial Dynamical Time (TDT) used for

geocentric ephemerides, and Barycentric Dynamical Time (TDB) used for ephemerides referred to the solar

system barycentre. TDT differs from TAI by a constant offset, which was chosen to give continuity with

ephemeris time. TDB and TDT differ by small periodic terms (arising from the transverse Doppler effect and

gravitational red-shift experienced by the observer) that depend on the form of the relativistic theory being

used: the difference includes an annual sinusoidal term of approximately 1.66 ms amplitude, planetary terms

contributing up to about 20 µs, and lunar and diurnal terms contributing up to about 2 µs.

In 1991 the IAU adopted resolutions introducing new timescales which all have units of measurement consis-

tent with the unit of time, the SI second. Terrestrial Time (TT) is the time reference for apparent geocentric

ephemerides, and can be considered as equivalent to TDT. Barycentric Coordinate Time (TCB) is the

coordinate time for a coordinate system with origin at the solar system barycentre. Because of relativistic

transformations TDB, and therefore TT, differ in rate from TCB by approximately 49 seconds per century.
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The relationships between TT, TAI and UTC: For civil and legal purposes it is necessary to have a time

scale which approximates the diurnal rotation of the Earth relative to the Sun. Historically this has been

known as Universal Time, but because the Earth’s angular spin rate is variable, the Universal Time scale is

non-uniform with respect to TAI. The civil time scale, which has been available through broadcast time signals

since 1972, is known as Co-ordinated Universal Time (UTC), and differs from TAI by an integer number

of seconds—it is adjusted, when judged necessary by the International Earth Rotation Service (IERS), by

adding a ‘leap’ second at midnight on December 31, or on June 30. The transformations between the various

time scales during the Hipparcos mission are given in Table 1.2.1.

Table 1.2.1. Relationship between time scales during the mission

Start interval End interval TAI−UTC TT−UTC

(UTC) (UTC) (s) (s)

Launch (1989 Aug 8) 1990 Jan 1 0h 24 56.184

1990 Jan 1 0h 1991 Jan 1 0h 25 57.184

1991 Jan 1 0h 1992 Jul 1 0h 26 58.184

1992 Jul 1 0h end of observations 27 59.184

Tables giving the correspondences between TT (preceded by ephemeris time), TAI (since 1955), and UTC,

can be found in the yearly reports of IERS as well as in the major astronomical almanacs.

1.2.4. Fundamental Constants

For the Hipparcos reductions the former IAU (1976) system of astronomical constants
has been adopted, with the exception of certain planetary masses entering the Earth
ephemeris. This affects primarily the position and velocity of the solar system barycen-
tre relative to the Sun, which enter, respectively, in the computation of barycentric
directions and stellar aberration.

The ephemeris for the Earth used formulae provided by the Bureau des Longitudes
based on VSOP 82 (P. Bretagnon, 1982, Astron. Astrophys., 114, 278) and ELP 2000
(M. Chapront-Touzé & J. Chapront, 1983, Astron. Astrophys., 124, 50). Although there
are small differences in certain of the constants used by the Bureau des Longitudes
ephemeris and the JPL ephemeris DE200 (for example in the mass of Pluto and in
the obliquity of the ecliptic) VSOP 82 was fitted to DE200 rather than directly to
observations, so that the basis for the Earth ephemeris is essentially DE200. Differences
between the respective ephemerides are of the order of a few mm/s in velocity, and
correspondingly small in position, differences which are entirely negligible (< 0.01 mas)
in the calculation of stellar aberration and parallax.

The numerical values or sources of data used in the data reductions are given in
Table 1.2.2. The unit of time is the SI second, or the Julian Year when this is more
convenient. The speed of light enters mainly in the computation of stellar aberration.
The astronomical unit is the basis for the definition of parallax. The heliocentric and
geocentric gravitational constants are used to compute the gravitational light bending
by the Sun and the Earth. The obliquity of the ecliptic has no direct significance for the
data reductions, but is used as a conventional value to transform between the equatorial
and ecliptic systems. The Earth ephemeris is relevant for the calculation of aberration
and parallax.
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Table 1.2.2. Physical and astronomical constants used for the data reductions

Symbol Meaning/Application Value

Unit of time SI second as realised on the geoid

Time scale Terrestrial Time (TT)

Julian Year Proper motion unit (mas yr−1) 365.25 × 86 400 s (exactly)

c Speed of light 299 792 458 m s−1 (exactly)

A Astronomical unit (499.004 782 s)×c (exactly)

= 1.495 978 701 × 1011 m (Am)

= 1000 mas pc (Ap)

= 4.740 470 446 km yr s−1 (Av)

= 9.777 922 181 × 108 mas km yr s−1 (Az)

GS Heliocentric gravitational constant 1.327 124 38 × 1020 m3s−2

GE Geocentric gravitational constant 3.986 005 × 1014 m3s−2

� Obliquity of ecliptic (J2000.0) 23� 260 21.44800 (exactly)

= 23.�439 291 111 1 . . .

Earth ephemeris VSOP 82/ELP 2000

Note: The astronomical unit A appears in all formulae relating linear measures to the parallax.

Depending on the context and the units used, it is represented by a variety of numerical values, as

indicated in the table. The appropriate numerical value in a given formula can always be ascertained

from the units, but for clarity the specific designations Am, Ap, Av or Az may also be used.

1.2.5. Conventions for Angular Coordinates

As explained in Section 1.2.2, astrometric data in the Hipparcos and Tycho Catalogues
are referred to the International Celestial Reference System (ICRS), and are given for
the mean catalogue epoch T0 = J1991.25(TT). With the choice of the ICRS, the angular
coordinates to be used are the equatorial ones: right ascension (α) and declination (δ).
Note, however, that the observations and, as a consequence, the error properties of the
resulting catalogue have a strong dependence on, and a strong symmetry when expressed
in, ecliptic latitude.

The proper motion is the rate of change of the position. As such it may be defined as the
time derivative of the positional coordinates, µα ≡ dα /dt and µδ ≡ dδ /dt. However, for
the proper motion component in right ascension, the quantity tabulated in the catalogues
is µα� ≡ (dα /dt) cos δ . The factor cos δ (signified by the asterisk in µα�) converts the
proper motion in α to great-circle measure, making it directly comparable to µδ and to
the proper motion components of other stars. For instance, the total proper motion
(length of the proper motion vector) is given by µ = (µ2

α� + µ2
δ )1/2, and the position angle

θ of the proper motion vector is defined through µα� = µ sin θ, µδ = µ cos θ.

The standard errors in position are similarly expressed in great-circle measure: σα� ≡
(standard error in α) × cos δ = σα cos δ , σδ ≡ (standard error in δ). As a result, the
quoted error is the true positional uncertainty on the sky; the resulting figures show no
systematic increase with increasing declination. Thus, for a star with δ = 80�, a typical
error in right ascension is σα� = 1 milliarcsec, while σα = 6 milliarcsec.

The standard errors in proper motion refer to the uncertainties in the great-circle mea-
sures µα� and µδ ; they are designated σµα� and σµδ .
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For a more rigorous definition of the standard errors, and especially for their propagation to other epochs, it

is convenient to introduce local rectangular coordinates (ξ, η) in the vicinity of the star; see Section 1.2.9.

In stellar catalogues, right ascension and declination have conventionally been given
in sexagesimal units, with the right ascension angle expressed as time (i.e. h m s for
α and ±� 0 00 for δ). This is widely recognised as inconvenient for computation, and
the publication of the Hipparcos and Tycho Catalogues offered an ideal opportunity to
establish an alternative practice. The options for the choice of angular unit included
the radian, degree, and arcsec. The choice must also consider the related units for
the proper motions, the parallax, and the standard errors. It has been decided to use
degrees, and decimal parts of the degree, for all celestial coordinates, and milliarcsec
(1 mas = 0.001 arcsec) for the standard errors, parallax and annual proper motions.

It would clearly have been computationally convenient to express all astrometric parameters in the same units,

particularly for applications involving updating of positions and for the computation of covariances. Since

the use of the arcsec for parallax and annual proper motion components is convenient and well-established,

and since the standard errors of the astrometric parameters are generally small numbers of milliarcsec, the

milliarcsec has been adopted as the unit for all astrometric errors, as well as for parallaxes and annual proper

motions. The contrasting use of (decimal) degrees for positions was considered as an acceptable compromise.

While the consistent use of radians, nanoradians, or milliarcsec might have been considered as scientifically

more desirable, such deviation from accepted astronomical practice was not considered to be justifiable.

Approximate right ascension and declination are nevertheless given for each object, for
identification purposes, in the conventional sexagesimal units (h m s, ±� 0 00). By
including these sexagesimal positions with truncated precision, possible confusion as
to which quantities constitute the definitive Hipparcos and Tycho Catalogue positions
should be avoided.

The astrometric parameters, as well as the other observational quantities in the catalogues, are given with a

sufficient number of decimals to ensure that the rounding errors introduced by the finite number of decimals

are much smaller than the observational uncertainties, even for the most accurate data. As a result, less

accurate data may be given with several non-significant decimals. The right ascension, for example, is always

given to eight decimal places (corresponding to a maximum rounding error of 0.018 cos δ mas), although

fewer decimals would in principle suffice near the poles or for the less precise positions. For many purposes,

especially statistical and graphical uses of the data, the rather high numerical resolution is a distinct advantage.

1.2.6. Conventions for Epochs

Time enters in the Hipparcos and Tycho Catalogues at several levels: for the standard
epoch of the coordinate system, for the epochs of the individual astrometric observations;
for the epoch of the published reference positions; for the unit of time for the proper
motions; for the epochs, and sometimes the time dependence, in the description of
double and multiple stars; and for the timing of the Hipparcos and Tycho photometric
observations. For all except the photometric observations, the practical unit is the Julian
year (of exactly 365.25 days or 31 557 600 s). For the propagation of stellar astrometric
positions to different epochs the subtleties of the precise time-scales employed may,
generally, be ignored.

This is not the case for the timing of individual photometric observations which are
provided in the Hipparcos and Tycho Epoch Photometry Annexes. An internal precision
of 0.01 s is achieved, although preserving such precision is not warranted in view of the
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uncertainty of the photometric measurements. The observation time is given in the
catalogues to 10−5 day, or to about one second. At this level, the precise time scale
has to be specified. Adopting the TT scale for the photometric, as well as astrometric,
results means that the epoch photometry is also presented on a continuous time scale
(i.e. without the timing discontinuities present in UTC). Users of the epoch photometry
must note the potentially significant difference between the TT and UTC time scales.

Epochs relevant to astrometry in the Hipparcos and Tycho Catalogues are expressed
in years and decimal fractions of a year. Observations of solar system objects are
given in terms of Julian Date (JD). The epochs in the Hipparcos and Tycho Epoch
Photometry Annexes (the compilations of epoch photometry) have been corrected to the
solar system barycentre by the application of light-time corresponding to the projected
coordinate distance from the satellite to the barycentre, and are expressed in terms of
Barycentric Julian Date, BJD(TT). This accords with the procedure widely adopted by
photometrists to avoid yearly phasing of light curves. (It should be noted that this is not
the same as expressing the observation epochs in barycentric coordinate time, TCB.)
An offset of 2 440 000.0 days has been introduced in order to conserve space, again
following a widely used convention. All Julian Dates in the Hipparcos context are in the
time-scale TT, and denoted JD(TT). Some confusion in the use of Julian Dates from the
literature may arise because they may be given (in the literature) either in TT or UTC,
without explicit specification. It should be carefully noted that Modified Julian Date
(i.e. JD−2 400 000.5) is not used in the context of the Hipparcos or Tycho Catalogues.

The standard epoch of the fundamental astronomical coordinate system J2000 corre-
sponds to JD 2 451 545.0 terrestrial time (TT), and to the calendar date 2000 January 1,
12h = 2000 January 1.5(TT).

Epoch definitions are based on the Julian year of 365.25 days. Thus the Julian epoch
Jyyyy.yy corresponds to:

JD = 2 451 545.0 + (yyyy.yy − 2000.0) × 365.25 [1.2.2]

In particular, the adopted catalogue epoch for the Hipparcos and Tycho Catalogues is:

T0 = J1991.25(TT) = JD 2 448 349.0625(TT) [1.2.3]

which is a good approximation to the mean central epoch of the observations.

Note that the adopted catalogue epoch contrasts with the standard epoch J2000 used,
for example, for the Hipparcos Input Catalogue compilation. This is simply a conse-
quence of the fact that the Hipparcos and Tycho Catalogues are observational catalogues
spanning the measurement interval 1989–93.

In principle, the mean observational epochs for the individual stars could have been explicitly included

in the catalogue, and the associated standard errors referred to that epoch. This would have minimised

the numerical values of the tabulated positional standard errors, as well as the correlations between the

position and proper motion components. However, because the astrometric parameters are derived from one-

dimensional measurements (scans) across an object, with an irregular distribution both in time and position

angle, the mean observational epoch is in general different in the two coordinates. This non-uniqueness of the

definition of the mean observational epoch and the additional complexity in handling the individual epochs

have prevented the adoption of this approach. Instead, a single common catalogue epoch has been used. The

complete information on the mean observational epochs is still preserved, as explained in Section 1.2.7, in

the standard errors and correlations, both of which are referred to the catalogue epoch J1991.25(TT).
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1.2.7. Variance-Covariance Data and Correlations

Although the catalogue gives the first positional coordinate as right ascension, the quan-
tity actually determined is ∆α cos δ , where ∆α is a correction to an initial value, α0.
Similarly, ∆δ is a correction to an initial value of declination, δ0. The five variables,
estimated by a weighted least-squares method, are therefore:

a1 = ∆α� ≡ ∆α cos δ

a2 = ∆δ

a3 = π

a4 = µα� ≡ µα cos δ

a5 = µδ

[1.2.4]

In the context of least-squares estimation, all information on the quality of the estimated
values aest

i is contained in the 5 × 5 variance-covariance matrix with elements ci j =
E[(aest

i − atrue
i )(aest

j − atrue
j )] (= c ji); i , j = 1, . . . , 5. However, the physical significance of

the covariances is made more transparent by giving separately the standard errors, σi ,
of the estimated parameters and the correlation coefficients, ρi j (= ρ j i). The elements
of the variance-covariance matrix can be reconstructed from the standard errors and
correlations by:

cii = σ2
i , ci j = ρi j σi σ j [1.2.5]

In the catalogues, the correlation coefficients are given in the order ρ21, ρ31, ρ32, ρ41,
..., ρ54 and are designated ρδ

α�, ρπ
α�, ρπ

δ , ρµα�
α� , ..., ρµδ

µα� . This sequence corresponds to
the triangular part of the correlation matrix below the main diagonal, taken in row-wise
order (or the upper-triangular part taken in column-wise order).

The use of the asterisk notation is not strictly required in the correlations, since the correlation coefficient is

the same between (say) α and δ , as between α cos δ and δ (with cos δ considered a fixed factor). Nevertheless,

it has been retained for uniformity.

Correlation coefficients are consistently provided, when appropriate, throughout the
astrometric parts of the Hipparcos and Tycho Catalogues. For the Hipparcos Catalogue,
only the 10 correlation coefficients among the five standard astrometric parameters are
given in the printed catalogue, while the machine-readable version gives the full set
of correlation coefficients also for the more complex solutions of double and multiple
systems. Correlations are provided in order to allow the standard errors of transformed
quantities to be correctly estimated (see Section 1.5).

The correlation coefficients and standard errors also implicitly define the mean observational epoch for an

individual object. This is in general different depending on which positional coordinate is considered; for

instance, it is different in right ascension and declination, while still other mean epochs are found in galactic

longitude and latitude. For a particular coordinate axis the mean observational epoch may be defined as the

epoch of zero correlation between the components of position and proper motion in that coordinate; this

epoch also minimises the standard error in the position coordinate. With Fn referring to fields Hn or Tn of

the Hipparcos and Tycho Catalogues respectively, the mean observational epoch in right ascension is given

by:

J1991.25 − ρµα�
α� ×

σα�

σµα�

= J1991.25 − F22 ×
F14

F17
[1.2.6]

at which epoch the standard error in right ascension is:

σα�
p

1 − (ρµα�
α� )2 = F14 ×

p
1 − F22 × F22 [1.2.7]
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The mean epoch in declination is given by:

J1991.25 − ρµδ
δ ×

σδ
σµδ

= J1991.25 − F26 ×
F15

F18
[1.2.8]

at which epoch the standard error in declination is:

σδ

q
1 − (ρµδ

δ )2 = F15 ×
p

1 − F26 × F26 [1.2.9]

If an ‘effective epoch’ for individual objects is required, it may be defined as the epoch minimising the sum

of the variances of the two positional coordinates (this definition is invariant with respect to the choice of

coordinate system); it is given by:

J1991.25 −
ρµα�

α� σα�σµα� + ρµδ
δ σδ σµδ

σ2
µα� + σ2

µδ

= J1991.25 −
F22 × F14 × F17 + F26 × F15 × F18

F17 × F17 + F18 × F18
[1.2.10]

The effective epoch always falls between the epochs given by Equations 1.2.6 and 1.2.8. The standard

errors in right ascension and declination at the effective epoch are slightly larger than the values given by

Equations 1.2.7 and 1.2.9.

Observation epochs determined according to these precepts must be interpreted with caution for ‘non-

standard’ solutions, such as certain orbital systems, or secondary components of ‘two-pointing’ entries fixed

with respect to the primary (with large positional errors and small errors in proper motion) where the calculated

mean epochs may even lie outside of the observation interval [1989.845, 1993.207].

1.2.8. The Standard Model of Stellar Motion

The five astrometric parameters given in the Hipparcos and Tycho Catalogues describe
the instantaneous motion of the star relative to the solar system barycentre, in a plane
perpendicular to the line of sight. The sixth parameter needed to completely specify
the space motion is the radial velocity, normally determined by spectroscopic means.
The physical model underlying this description is that the stars move through space
with constant velocity vector. This section reviews the formulae needed to calculate the
positions of the stars for arbitrary epochs according to this ‘standard’ model of stellar
motion, which is the basis for the main astrometric reduction of the Hipparcos data.

In reality the space velocity may vary because of perturbations from a companion star, planets, or the gravity

field of other stars; ultimately, the curvatures of the galactic orbits of the star and of the Sun must be taken into

account when extrapolating to sufficiently distant epochs. Except for the perturbations by close companions,

these effects can generally be ignored in the computation of stellar positions over time spans of a century or

less, even at the precision level of Hipparcos. Uniform space motion thus remains the standard model for the

majority of stars in the Hipparcos Catalogue. The perturbations by close companions, when significant, are

covered by the special solutions of type G and O in the Double and Multiple Systems Annex; see Section 2.3.

The five astrometric parameters, as given in the catalogues, refer to the common epoch
T0 = J1991.25(TT). Since the parameters change with time, subscript 0 will be used,
when necessary, to denote their values as given in the catalogues. In particular, the
barycentric direction towards the star at the epoch T0 is specified by the celestial co-
ordinates α0, δ0 given in Fields H8 and H9 of the Hipparcos Catalogue, or Fields T8
and T9 in the Tycho Catalogue. Equivalently, this direction may be expressed as a unit
vector r0, whose rectangular equatorial coordinates are given by:

r0 =

 cos δ0 cos α0

cos δ0 sin α0

sin δ0

!
[1.2.11]
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Figure 1.2.1. Definition of the barycentric coordinate direction uB(t) to a star moving with uniform space velocity

v relative to the solar system barycentre B. S(0), S(t) are the positions of the star at times 0 and t.
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Figure 1.2.2. Definition of the topocentric coordinate direction uE(t). bE(t) = barycentric vector to the observer at

E(t); other designations as in Figure 1.2.1.
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Figure 1.2.3. Definition of local plane coordinates (ξ, η) in the tangent plane at r0. The orthogonal unit vectors p0

and q0, which span the tangent plane, are oriented in the local directions of +α and +δ at r0, respectively. P is the

projection of unit vector u in the tangent plane, ξ and η its rectangular coordinates with respect to p0 and q0. The

position angle θ of u with respect to r0 is indicated.
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The standard model is a prescription for calculating the celestial position (direction) at
the arbitrary epoch T = T0 + t.

Two cases are considered: the calculation of the barycentric direction (as seen from
the solar system barycentre), and of the topocentric direction (as seen from an arbitrary
location such as a point on the Earth). The two directions differ by the parallactic
displacement of the star.

Note that all directions discussed in this section are coordinate directions corresponding to
the coordinate differences between the source and observer in the barycentric coordinate
frame. The transformation of coordinate directions to observed (proper) directions is
discussed in Volume 3, Chapter 12; see also, for example, C.A. Murray, 1983, Vectorial
Astrometry, Bristol, and the annual issues of The Astronomical Almanac, Section B.
Furthermore, light-time effects are ignored here, i.e. no distinction is made between
the time of light emission at the object and the time of light reception by the observer;
both are designated T (or t) as if the speed of light were infinite. It can be shown that
the errors introduced by this approximation are negligible as far as the modelling of the
coordinate direction as a function of time is concerned: even in an extreme case such
as Barnard’s star, the errors are smaller than those caused by neglecting the curvature
of its galactic orbit. See also the note after Equation 1.2.20.

The barycentric coordinate direction: In the standard model the barycentric vector
to the star is given by:

b(t) = b(0) + vt [1.2.12]

where b(0) = r0A /π0 is the barycentric position at the catalogue epoch and v the constant
space velocity (Figure 1.2.1). Using angular brackets to denote vector normalisation, the
barycentric direction is given by the unit vector uB(t) = hb(0) + vt i. This expression is
unsuitable for calculation because of the appearance of the parallax in the denominator.
A more convenient form is:

uB(t) = h r0 + v(π0 /A)t i [1.2.13]

where the normalisation factor is very close to unity.

The proper motion vector is the time derivative of the unit vector uB(t). From its
equatorial components at epoch T0, µα�0 and µδ0, the proper motion vector is calculated
as:

�0 = p0µα�0 + q0µδ0 [1.2.14]

where p0 and q0 are the unit vectors in the directions of increasing α and δ at r0 (see
Figure 1.2.3):

p0 =

 − sin α0

cos α0

0

!
q0 =

 − sin δ0 cos α0

− sin δ0 sin α0

cos δ0

!
[1.2.15]

The orthogonal vector triad [ p0 q0 r0 ] is known as the normal triad at r0 relative to
the equatorial system, and is important for the definition of differential quantities such
as the proper motion components, the standard errors in position, or the local plane
coordinates defined in Section 1.2.9. The normal triad should be regarded as a fixed
set of coordinate axes completely defined by the given values of α0 and δ0; it is thus
unaffected, for instance, by the observational uncertainty of these angles.

The tangential vectors at r0 relative to the equatorial system can be written as p0 = hz × r0i and q0 = r0 × p0,

where z is equatorial polar direction (towards δ = +90�). In equatorial rectangular coordinates, where

z = (0 0 1)0 and r0 is given by Equation 1.2.11, evaluation of these expressions gives Equation 1.2.15. Other
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coordinate systems, e.g. the ecliptic and galactic systems, have different normal triads at r0 corresponding to

their polar directions (see Section 1.5.3).

Writing the space velocity as v = �0A /π0 + r0VR0, Equation 1.2.13 becomes:

uB(t) = h r0 + (p0µα�0 + q0µδ0 + r0ζ0)t i = h r0(1 + ζ0t) + �0t i [1.2.16]

where:
ζ0 = VR0π0 /A [1.2.17]

is the relative change in distance per year.

It is seen from Equation 1.2.16 that µα�0, µδ0 and ζ0 are the components of the space velocity, scaled by

the inverse distance at epoch T0, along the vectors of the normal triad at r0. The quantity ζ0 is therefore

the equivalent, in the radial direction, to the proper motion in the tangential direction, and is statistically

of a similar size when expressed in the corresponding unit. With VR0 expressed in [km s−1], π0 in [mas],

and A in [km yr s−1] (= Av in Table 1.2.2), Equation 1.2.17 gives ζ0 in [mas yr−1]. Using A expressed in

[mas km yr s−1] (= Az in Table 1.2.2) gives ζ0 in [yr−1], appropriate for calculating the factor (1 + ζ0t) in

Equation 1.2.16.

The topocentric coordinate direction: The coordinate difference between the object
and the observer is given by the vector b(0) + vt − bE(t), where bE is the barycentric
position of the observer (Figure 1.2.2). The topocentric direction is therefore given by
the unit vector:

uE(t) = h r0(1 + ζ0t) + �0t − bE(t)π0 /A i [1.2.18]

where, again, the normalising factor is very close to unity.

For Earth-bound applications of the Hipparcos and Tycho Catalogues it is sufficient
to consider a geocentric observer. In that case bE(t) /A may be taken directly from
a barycentric equatorial ephemeris of the Earth, such as given in Section B of The
Astronomical Almanac.

Equations 1.2.14 to 1.2.17 allow the barycentric direction to be calculated in terms of
the six parameters α0, δ0, π0, µα�0, µδ0 and VR0. The topocentric direction is similarly
obtained by using Equation 1.2.18 instead of Equation 1.2.16. Either direction may
be converted to celestial coordinates α(t), δ(t) using the component form of the unit
vector:

u(t) =

 cos δ(t) cos α(t)
cos δ(t) sin α(t)

sin δ(t)

!
[1.2.19]

It should be noted that many applications of the catalogue data, such as the further
transformation into ‘proper’ directions for comparison with observations, is best done
using vector calculus, in which case α(t), δ(t) are usually never explicitly needed.

Secular or perspective acceleration: The ζ0 introduced by Equation 1.2.17 is the
relative change in distance per unit time. The factor (1+ζ0t) appearing in the normalising
factors of Equations 1.2.16 and 1.2.18 thus accounts for the perspective diminishing of
the proper motion of a receding object. This is known as the ‘secular’ or ‘perspective’
acceleration of the star. It is important to note that it is a purely geometrical effect which
does not correspond to any physical action on the star.
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Table 1.2.3. Radial velocities used for the correction of perspective acceleration

HIP VR HIP VR

(km s−1) (km s−1)

439 +22.9 71681 −18.1

3829 −38.0 71683 −26.2

5336 −98.1 74234 +308.0

15510 +86.7 74235 +294.3

19849 −42.7 86990 −115.0

24186 +245.5 87937 −111.0

26857 +105.6 99461 −129.8

54035 −84.3 104214 −64.8

54211 +68.8 104217 −64.3

57939 −99.1 108870 −40.4

70890 −16.0

The radial velocity of HIP 3829 has been adjusted from the observed value of +15 km s−1 to account for

gravitational redshift and pressure shift (note that the value used for the data reductions is significantly different

from the value given in the Hipparcos Input Catalogue).

The accumulated effect on the position is approximately given by ζ0µ0t2. It is thus
proportional to π × µ × VR and practically negligible except for some nearby, high proper
motion stars with large radial velocity. For the purpose of the Hipparcos data reductions,
available ground-based radial velocity estimates for particularly critical objects were used
as given in Table 1.2.3. In all other cases, VR was assumed to be zero. The sample in
Table 1.2.3 contains all Hipparcos stars with available radial velocities, for which the
predicted accumulated effect over two years exceeds 0.1 mas.

Computation of transverse motions: The component of the stellar space velocity
tangent to the line of sight, VT, is traditionally calculated as:

VT =
Avµ

π
[1.2.20]

where Av = 4.740 47 . . . equals the astronomical unit, expressed in [km yr s−1] (see
Table 1.2.2). Many textbooks give slightly different values for Av, usually because they
assume the (now obsolete) tropical year as time unit for the proper motions.

Equation 1.2.20 is consistent with the standard model of stellar motions, in that it neglects the light-time

effects. As mentioned before, this is an acceptable approximation for the modelling of the apparent motions

of stars over historical time spans. However, light-time effects are not necessarily negligible for the calculation

of the transverse velocity. In principle, the space velocity should be defined as v = db /dt�, where t� = t − b /c

is the time of light emission at the star. Since dt� /dt = 1 − VR /c, it follows that the correct expression for the

space velocity, in terms of the observed proper motion and radial velocity, is:

v = (�A /π + r0VR)(1 − VR /c)−1 [1.2.21]

The expression for VT, Equation 1.2.20, should thus in principle be amended to include the Doppler factor

k = (1−VR /c)−1. While the omission of this factor has drastic consequences for the interpretation of relativistic

motions (for example, as superluminal expansion), it causes only a very small error on the calculated space

velocities of galactic stars and there is generally no harm in using Equation 1.2.20 as it stands. (Equation 1.2.21

assumes that VR is defined as the rate of change in coordinate distance per unit of t. Depending on the formula

used to convert the observed redshift to a velocity, this may or may not be true.) The calculation of space

coordinates and velocities is more extensively treated in Section 1.5.6.
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1.2.9. Use of Local Plane Coordinates

While the use of vector calculus is generally to be recommended for rigorous computa-
tion of celestial directions, there are circumstances where small changes in the directions
are best described differentially with respect to some reference direction. A typical ex-
ample is the use of separation and position angle to characterise the relative positions of
the components in a double or multiple star, or the definition of orbital parameters for
binaries.

The classical method to express such positional offsets is by means of direct differences
in the celestial coordinates. In the equatorial system these are typically denoted ∆α cos δ
and ∆δ , where the cos δ factor is introduced to make the arc measures comparable in
the two coordinates.

Quantities like ∆α cos δ and ∆δ , while perfectly serviceable in many situations, suffer
from a certain ambiguity or lack of rigour which make them unsuitable for general
computation. Unpleasant or unforeseen things could happen especially when used for
stars close to the celestial poles. These disadvantages can be eliminated by adopting a
precise definition of offset coordinates. Among several possible choices, the one adopted
presently appears eminently suitable for propagating positions according to the standard
model described in the previous section. It corresponds closely to the use of ‘standard
coordinates’ in photographic astrometry. In order to avoid association with the less well-
defined ∆α cos δ and ∆δ , a specific notation (ξ, η) is introduced for the offset coordinates
according to this definition.

The offset coordinates (ξ, η) are defined as rectangular coordinates in the tangent plane
at the fixed reference point r0, with ξ and η increasing respectively in the directions of
the vectors p0 and q0 (Figure 1.2.3). The normal triad [ p0 q0 r0 ], and hence the offset
coordinate system, is completely defined by the barycentric celestial coordinates α0 and
δ0 at the catalogue epoch T0; its equatorial components are given by Equations 1.2.11
and 1.2.15.

For the arbitrary direction u the offset coordinates are calculated as:

ξ =
p0

0u
r00u

η =
q0

0u
r00u

[1.2.22]

where the prime (0) denotes scalar product, or the transpose of the column matrix
representing the vector. Note that Equation 1.2.22 does not require that u is of unit
length. Conversely, the direction may be calculated from the offset coordinates as:

u = h r0 + p0ξ + q0η i [1.2.23]

An alternative way to express the offset position is by means of polar coordinates %

(separation) and θ (position angle), as used for instance for double stars. The exact
relation between the two representations is given by:

ξ = tan % sin θ

η = tan % cos θ
[1.2.24]
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Inserting Equation 1.2.16 in 1.2.22 gives a particularly simple expression for the offset
coordinates of the barycentric position according to the standard model:

ξB(t) =
µα�0t

1 + ζ0t

ηB(t) =
µδ0t

1 + ζ0t

[1.2.25]

As seen from the barycentre, the star moves in a straight line in the (ξ, η) plane. To
the extent that ζ0t can be neglected the motion is, moreover, linear in time. For the
topocentric direction the offset coordinates become:

ξE(t) =
µα�0t − p0

0bE(t)π0 /A
1 + ζ0t − r00bE(t)π0 /A

ηE(t) =
µδ0t − q0

0bE(t)π0 /A
1 + ζ0t − r00bE(t)π0 /A

[1.2.26]

To the accuracy of the Hipparcos data the last term in the denominators of Equa-
tion 1.2.26 can always be ignored.

In Parts G, O and V of the Double and Multiple Systems Annex (Section 2.3) the
non-linear motions of the photocentres of unresolved binaries are expressed relative to a
fiducial point moving according to the standard model in Section 1.2.8, with astrometric
parameters as given in the main catalogue (and assuming ζ0 = 0 except for the stars
in Table 1.2.3). See Equations 2.3.1, 2.3.5, and 2.3.9. The offset coordinates of the
fiducial point are denoted ξs(t) and ηs(t) and may be calculated from Equation 1.2.25
or 1.2.26 depending on whether barycentric or topocentric positions are required.
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