The Hipparcos and Tycho Catalogues

The Hipparcos and Tycho Catalogues

Astrometric and Photometric Star Catalogues

derived from the

ESA Hipparcos Space Astrometry Mission

A Collaboration Between the European Space Agency

and

the FAST, NDAC, TDAC and INCA Consortia

and the Hipparcos Industrial Consortium led by

Matra Marconi Space and Alenia Spazio

> European Space Agency Agence spatiale européenne

Cover illustration: an impression of selected stars in their true positions around the Sun, as determined by Hipparcos, and viewed from a distant vantage point. Inset: sky map of the number of observations made by Hipparcos, in ecliptic coordinates.

Published by:	ESA Publications Division, c/o ESTEC, Noordwijk, The Netherlands
Scientific Coordination:	M.A.C. Perryman, ESA Space Science Department
	and the Hipparcos Science Team
Composition:	Volume 1: M.A.C. Perryman
	Volume 2: K.S. O'Flaherty
	Volume 3: F. van Leeuwen, L. Lindegren & F. Mignard
	Volume 4: U. Bastian & E. Høg
	Volumes 5–11: Hans Schrijver
	Volume 12: Michel Grenon
	Volume 13: Michel Grenon (charts) & Hans Schrijver (tables)
	Volumes 14–16: Roger W. Sinnott
	Volume 17: Hans Schrijver & W. O'Mullane
	Typeset using TEX (by D.E. Knuth) and dvips (by T. Rokicki) in Monotype Plantin (Adobe) and Frutiger (URW)
Film Production:	Volumes 1–4: ESA Publications Division, ESTEC, Noordwijk, The Netherlands Volumes 5–13: Imprimerie Louis-Jean, Gap, France
	Volumes 14–16: Sky Publishing Corporation, Cambridge, Massachusetts, USA
ASCII CD-ROMs:	Swets & Zeitlinger B.V., Lisse, The Netherlands
Publications Management:	B. Battrick & H. Wapstra
Cover Design:	C. Haakman
©1997	European Space Agency ISSN 0379-6566 ISBN 92-9092-399-7 (Volumes 1-17)
Price:	650 Dfl (\$400) (17 volumes) 165 Dfl (\$100) (Volumes 1 & 17 only)

Volume 2

The Hipparcos Satellite Operations

Compiled by:

M.A.C. Perryman & K.S. O'Flaherty (ESA–ESTEC) D. Heger (ESA–ESOC) & A.J.C. McDonald (ESOC/Logica UK Ltd)

with the support of

The Hipparcos Science Team,

M. Bouffard (Matra Marconi Space), and

B. Strim (Alenia Spazio)

Launch of the Hipparcos Satellite by Ariane 4 Flight V33, 8 August 1989 (Photo: CSG Kourou)

Volume 2: The Hipparcos Satellite Operations Contents

Foreword																xiii
Prologue																. 1

Section A: Background

1. Overview of the Hipparcos Satellite											11
1.1. Operating Principle											11
1.2. Constraints and Properties of the Nominal Orbit											17
1.3. Satellite Environmental Conditions											
1.4. Attitude Control Concept											
1.5. Data Handling and Processing											
1.6. Operational Concept											
1.7. Satellite Mechanical and Electrical Design											25
1.8. Ground Segment Overview											
2. The Payload: Overview and Optical Elements											33
2.1. Introduction \ldots \ldots \ldots \ldots \ldots \ldots											
2.2. Payload Configuration and Layout					•			•	•	•	35
2.3. Payload Hardware											41
2.4. Telescope Mirrors											43
2.5. Modulating Grid and Baffle Unit											47
2.6. Relay Lens Systems											
3. The Payload: Detectors, Electronics, and Structure .											65
3.1. Detectors											
3.2. Payload Electronics and Mechanisms											
3.3. Baffles											
3.4. Payload Structure	•	·	•	•	•	•	•	•	•	•	19

Section B: Launch and Early Orbit Phases

4.	4. Launch and Revised Mission Definition	 . 85
	4.1. Introduction	 . 85
	4.2. Operations Until Revised Mission Implementation	 . 86
	4.3. Apogee Boost Motor Failure Investigations	 . 87
	4.4. Revised Mission Definition	 . 88
	4.5. Ground Station Utilisation	 . 91
	4.6. Mission Planning	 . 94
	4.7. Orbit Manoeuvres and Commissioning Activities	
	8	

X

oi tabi 1651yiPai t. in1531 ralibi tabi 161.5				
yt ici tail\$.5 41				
5.9. Straylight	•••	• •	•••	. 115
6. The Operational Orbit	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·		. 117 . 119 . 119 . 121 . 121 . 122 . 122
 7. Radiation Background and Related Effects 7.1. Introduction 7.2. The Radiation Environment in Space 7.3. Modelling the Radiation Dose Absorbed by the Satellite 7.4. Effects of the Radiation Background on the Mission 	 	 	•••	. 127 . 128 . 132

Section C: Interfaces with the Scientific Consortia

8.	The Observation Programme and Interface with the INCA Consortium	1			143
	8.1. Scanning Law	•			143
	8.2. Star Observations	•			150
	8.3. Input Catalogue Consortium Interfaces with ESOC	•			156
	8.4. Programme Star File Generation	•			160
	8.5. Modulation Strategy	•	•	•	163
9.	Interfaces with the Data Reduction Consortia				167
	9.1. Introduction				167
	9.2. Data Distribution from ESOC to the Consortia				169
	9.3. Data from FAST to ESOC in Support of Satellite Operations .				175
	9.4. Data from NDAC to ESOC in Support of Satellite Operations .	•			176

Section D: Payload and Spacecraft Performances

10. Routine Calibration and Payload Evolution	79
10.1. Routine Monitoring Activities at ESOC	79
10.2. Payload Calibration	32
10.3. Focus Evolution	35
10.4. Photometric Evolution	
10.5. Payload Modelling	93
10.6. Star Mapper Sensitivity during Suspended Operations)7
11. Solar Array Performance	09
11.1. Introduction	
11.2. Power Subsystem Degradation	11
11.3. Solar Array Degradation	
11.4. Eclipse-Induced Attitude Jitter	
12. Thermal Control	27
12.1. Introduction	
12.2. Heater Design	29
12.3. Payload Thermal Control History	
12.4. Thermal Anomalies and the Basic Angle	

Section E: Real-Time Attitude Control and Determination

13. Attitude and Orbit Control System and Performances		•	. 237
13.1. Functions of the Attitude and Orbit Control System	•		. 237
13.2. Equipment Description			. 238
13.3. Reaction Control Assembly			. 241
13.4. Inertial Reference Unit			
13.5. Gyro Performances	•		. 245
13.6. Gyro Related Ground Investigations	•		. 249
13.7. Gas Consumption			
13.8. Normal Mode Controller			
13.9. Thruster Monitoring and Normal Mode Software Patch		•	. 255
13.10. Disturbance Torques			. 256
13.11. Real-Time Attitude Determination	•	•	. 256
14. Real-Time Attitude Determination with Three Gyros			. 257
14.1. Introduction and Overall Concept			. 257
14.2. On-Board Real-Time Attitude Determination using Three Gyros			
14.3. On-Ground Real-Time Attitude Determination	•		. 265
14.4. Real-Time Attitude Determination Performance	•		. 281

•							•	. 287
•							•	. 287
							•	. 289
							•	. 291
							•	. 294
•						 •	•	. 300
						 		. 305
								. 305
								. 307
							•	. 311
								. 315
· · · ·	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·			.	

Section F: End of Mission

17.	End of Mission Activities and Conclusions	•							317
	17.1. End-of-Life History	•							317
	17.2. End-of-Life Tests	•							318
	17.3. Satellite Reliability Assessment								322
	17.4. Data Archiving Policy								
	17.5. Miscellaneous Considerations	•							322
	17.6. Overall Success of the Hipparcos Mission	ı							329

Appendices

Appendix A. The ESA-ESOC Operations Team	•	•	•	•	•	•	•	•	. 331
Appendix B. Satellite Anomalies	•			•				•	. 337
Appendix C. References	•		•	•	•	•	•	•	. 349
Appendix D. Bibliography	•		•	•	•	•	•	•	. 351
Appendix E. The Hipparcos Mission Costs	•		•	•				•	. 379
Appendix F. The Hipparcos Satellite During Development	•		•	•	•		•	•	. 383
Index	•		•	•		•	•	•	. 397

Foreword

The Hipparcos astrometry mission was accepted within the European Space Agency's scientific programme in 1980. The Hipparcos satellite was designed and constructed under ESA responsibility by a European industrial consortium led by Matra Marconi Space (France) and Alenia Spazio (Italy), and launched by Ariane 4 flight V33 on 8 August 1989. High-quality scientific data were acquired between November 1989 and March 1993, and communications with the satellite were terminated on 15 August 1993. The Hipparcos and Tycho Catalogues, representing the most accurate and comprehensive astrometric and photometric star catalogues compiled to date, were finalised within three years of the end of the satellite operations—almost exactly corresponding to the schedule anticipated by the scientific consortia before the satellite launch. All of the scientific goals motivating the mission's adoption in 1980 were surpassed.

An enormous effort—scientific, technical, and managerial—was devoted to the satellite design, construction, testing and calibration, in a commitment extending over approximately eight years; in parallel, teams of European scientists worked closely with ESA to prepare a complex chain of computer programs ready to process nearly 1000 Gbits of satellite data in what amounted to the largest single data analysis problem ever undertaken in astronomy.

Ultimate success was not easily won. After a nominal launch, the failure of the apogee boost motor left the satellite in an unplanned, highly eccentric geostationary transfer orbit. A mission which was designed to have a single ground station, operated in a geostationary orbit for 24 hours a day, turned out instead to consist of a satellite in contact with the ground station for less than 10 hours a day, repeatedly crossing the harsh radiation environment of the van Allen belts. Further ground stations were brought into the telecommunications network. ESOC, in collaboration with Matra Marconi Space, developed new operational procedures to accommodate the new orbit, the revised data to be sent to the scientific data reduction groups, and contingency procedures to maintain the flow of scientific data. The payload and spacecraft subsystems all worked within their design specifications, the satellite was eventually operated for more than the 2.5 years nominal mission duration, and scientific data of extremely high quality were acquired.

This volume is intended as a detailed description of the manner in which the scientific data were collected. In addition, it provides a summary of the satellite and payload performances, and a record of the technological investigations and resulting knowledge derived from the operation of the Hipparcos satellite. It includes details of the major spacecraft and payload subsystems, the radiation environment, understanding of the payload evolution, perturbing torques acting on the satellite, and details of the development of two- and zero-gyro operational procedures implemented as gyro failures threatened to terminate operations prematurely.

The material in this volume has been based on the pre-launch technical description, published in 1989 as ESA SP-1111 Volume I, combined with the ESOC Operations Report produced by the Operations Team at the end of the mission. Significant parts of the report are taken from the Matra Marconi Space 'In-Orbit Performance Verification Report' prepared under ESA contract. Other material was taken from technical notes compiled throughout the satellite operations phase.

Significant additional material was included as follows:

- material in Chapter 5 is based on Davies, P.E. & McDonald, A.J.C., 1991 *Results of the Hipparcos In-Orbit Payload Calibration*, Journal of the British Interplanetary Society, Vol. 44, 37;
- material in Chapter 7 is based on Crabb, R.L., 1994 Solar cell radiation damage, Radiat. Phys. Chem. 43, 93–103; Nieminen, P.J., 1995 Standard radiation environment monitor detector design and simulations, ESTEC Working Paper 1829; Section 7.4 is from Daly, E.J. et al., 1994 Radiation-belt and transient solar-magnetospheric effects on Hipparcos radiation background, IEEE Trans. Nucl. Sci. NS-41, 6, 2376;
- parts of Chapter 10 are from Lindegren, L. et al., 1992 *Geometrical stability and evolution of the Hipparcos telescope*, Astronomy & Astrophysics, 258, 35, and updated by L. Lindegren and F. van Leeuwen;
- material in Chapter 11 was taken from Crabb, R.L. & Robben, A.P., 1993 *In-flight Hipparcos solar array performance degradation after three and a half years*, Proc. European Space Power Conference, Graz, Austria, ESTEC/XPG-WPP-054;
- parts of Chapter 14 were taken from Batten, A.J. & McDonald, A.J.C., 1989, *Hipparcos precise attitude determination: methods and results*, Int. Symp. Space Dynamics, Toulouse, France;
- material in Chapter 15 is based on Auburn, J.H.C., Batten, A.J. & McDonald, A.J.C., 1991 *Hipparcos attitude determination with two gyros and a star mapper*, Proc. 3rd International Symp. Spacecraft Flight Dynamics, Darmstadt, Germany, ESA SP-326, 213.

The composition of the ESA-ESOC Launch and Operations Teams are given in Appendix A to this volume. The key personnel involved from Matra Marconi Space (the satellite Prime Contractor) and Alenia Spazio (responsible for the spacecraft and for the satellite integration), along with the industrial sub-contractors, are given in Volume 1. Detailed acknowledgments are also included in Volume 1.

The Bibliography covers all aspects of the Hipparcos mission published up until 1996, including scientific papers referring to the construction of the Hipparcos Input Catalogue and to the data analysis tasks, and published progress reports, in both refereed journals, conference proceedings, and the popular press.

We take this opportunity to attribute the overall success of ESA's Hipparcos space astrometry mission to the scientific and political groups who encouraged and supported the possibilities of space astrometry from the project's origins in 1967 through to the ESA advisory structure which ultimately ensured its completion; to the ESA Project Team which supervised all technical aspects; to European industry under the leadership of Matra Marconi Space and Alenia Spazio which turned concept into reality; to the ESOC Operations Team for meeting a seemingly impossible challenge of maintaining satellite operations for more than three years; and to the Hipparcos scientific teams for their relentless pursuit of milliarcsec astrometry.

> M.A.C. Perryman, Hipparcos Project Scientist D. Heger, Hipparcos Spacecraft Operations Manager